Moscow University Soil Science Bulletin

, Volume 70, Issue 3, pp 122–129 | Cite as

Predominant organic contaminants in arboretum soil of the Botanical Garden of Moscow State University: Report 2. Specific features of vertical distribution pattern of polycyclic aromatic hydrocarbons in the profile of urbo-soddy-podzolic soil

  • G. I. Agapkina
  • V. V. Stolbova
  • E. S. Brodskiy
  • A. A. Shelepchikov
  • D. B. Feshin


The distribution pattern of 12 polycyclic aromatic hydrocarbons (PAHs) in the profile of the urbo–soddy–podzolic soil of the arboretum of the Botanical Garden of Moscow State University is studied. Several accumulative zones of PAHs are specified, the role of environmental factors in the accumulation of polyarenes at soil geochemical barriers is shown, the ecological role of contamination rates is evaluated, and probable sources of PAHs in soils are determined. Data on the share of polyarenes with pronounced carcinogenic properties in the PAH spectrum and their toxicity equivalent with respect to benz(a)pyrene are given.


urboecosystem botanical garden urbo–soddy–podzolic soil soil profile soil contamination composition of polycyclic aromatic hydrocarbons toxicity equivalent with respect to benz(a)pyrene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agapkina, G.I., Brodskiy, E.S., Shelepchikov, A.A., and Feshin, D.B., Specific activity of PAH in soils of Moscow parks, in Mater. Vtoroi mezhd. nauchno-prakt. konf. “Ekologiya biositem: problemy izucheniya, indikatsii i prognozirovaniya” (Proc. Second Int. Sci.-Pract. Conf. “Ecology of Biosystems: Problems of Study, Indication, and Forecasting”), Astrakhan, 2009.Google Scholar
  2. 2.
    Agapkina, G.I., Efimenko, E.S., Brodskii, E.S., Shelepchikov, A.A., and Feshin, D.B., Priority organic pollutants in soils of the arboretum in the Botanical Garden of Moscow State University, Moscow Univ. Soil Sci. Bull., 2012, vol. 67, no. 4, pp. 164–170.CrossRefGoogle Scholar
  3. 3.
    Agapkina, G.I., Chikov, P.A., Shelepchikov, A.A., Brodskii, E.S., Feshin, D.B., Bukhan’ko, N.G., and Balashova, S.P., Polycyclic aromatic hydrocarbons in soils of Moscow, Moscow Univ. Soil Sci. Bull., 2007, vol. 62, no. 3, pp. 149–158.CrossRefGoogle Scholar
  4. 4.
    Vrednye khimicheskie veshchestva. Uglevodorody. Galogenproizvodnye uglevodorodov: Spravochnik (Harmful Chemicals, Hydrocarbons, and Halogenated Hydrocarbons: Handbook), Filov, V.A., Ed., Leningrad: Khimiya, 1990.Google Scholar
  5. 5.
    Gabov, D.N., Beznosikov, V.A., and Kondratenok, B.M., Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils, Eurasian Soil Sci., 2007, vol. 40, no. 3, pp. 256–264.CrossRefGoogle Scholar
  6. 6.
    Gennadiev, A.N., Pikovskii, Yu.I., Chernyanskii, S.S., Alekseeva, T.A., and Kovach, R.G., Forms of polycyclic aromatic hydrocarbons and factors of their accumulations in soils affected by technogenic pollution (Moscow oblast), Eurasian Soil Sci., 2004, vol. 37, no. 7, pp. 697–709.Google Scholar
  7. 7.
    GN (State Normative) Maximum permissible concentrations (MPC) of chemical substances in soil.Google Scholar
  8. 8.
    Kogut, B.M., Galaktionov, A.Yu., Titova, N.A., and Schulz, E., Concentrations and composition of polycyclic aromatic hydrocarbons in the granulodensimetric fractions of soils in Moscow parks, Eurasian Soil Sci., 2006, vol. 39, no. 10, pp. 1066–1073.CrossRefGoogle Scholar
  9. 9.
    Maistrenko, V.N. and Klyuev, N.A., Ekologo-analiticheskii monitoring stoikikh organicheskikh zagryaznitelei (Ecological Analytical Monitoring of Stable Organic Pollutants), Moscow: BINOM. Laboratoriya Znanii, 2004.Google Scholar
  10. 10.
    MUK 4.1.008-01. 3,4-benzpiren. Spektrofluorimetriya. Ekstraktsionnyi metod opredeleniya kontsentratsii v problakh glinistykh pochv (3,4Benzpyrene. Spectrofluorimeter. The Extraction Method for Determination of the 3,4-Benzpyrene Concentration in Samples of Clay Soils by Spectrofluorimetry).Google Scholar
  11. 11.
    Nikiforova, E.M. and Kosheleva, N.E., Polycyclic aromatic hydrocarbons in urban soils (Moscow, eastern district), Eurasian Soil Sci., 2011, vol. 44, no. 9, pp. 1018–1030.CrossRefGoogle Scholar
  12. 12.
    Pochva, gorod, ekologiya (Soil, City, and Ecology), Dobrovolsky, G.V., Ed., Moscow: Fond Ekol. Gramotnost’, 1997.Google Scholar
  13. 13.
    The United Nations Environment Program (UNEP), Subprogram on Chemical Substances, European Regional Report, Global Environmental Fund, 2002.Google Scholar
  14. 14.
    Rovinskii, F.Ya., Teplitskaya, T.A., and Alekseeva, T.A., Fonovyi monitoring politsiklicheskikh aromaticheskikh uglevodorodov (Background Monitoring of Polycyclic Aromatic Hydrocarbons), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  15. 15.
    SanPin Sanitary Epidemiological Requirements to Soil Quality.Google Scholar
  16. 16.
    SanPin 1.2.2353-08: Carcinogenic Factors and General Requirements for the Prevention of Carcinogenic Danger.Google Scholar
  17. 17.
    Stroganova, M.N. and Rappoport, A.V., Specific features of anthropogenic soils in botanical gardens of metropolises in the southern taiga subzone, Eurasian Soil Sci., 2005, vol. 38, no. 9, pp. 966–972.Google Scholar
  18. 18.
    Banger, K., Toor, G.S., Chirenje, T., et al., Polycyclic aromatic hydrocarbons in urban soils of different land uses in Miami, Florida, Soil Sediment Contam., 2010, vol. 10, no. 2, pp. 231–243.CrossRefGoogle Scholar
  19. 19.
    Boitsov, S., Jensen, H.K.B., and Kungsoyr, J., Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of SouthWestern Barents Sea, Mar. Environ. Res., 2009, vol. 68, no. 5, pp. 236–245.CrossRefGoogle Scholar
  20. 20.
    Brandli, R.C., Bucheli, T.D., Ammann, S., et al., Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network, J. Environ. Monit., 2008, vol. 10, no. 11, pp. 1278–1286.CrossRefGoogle Scholar
  21. 21.
    Budzinski, H., Jones, I., Bellocq, J., et al., Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary, Mar. Chem., 1997, vol. 58, nos. 1–2, pp. 85–97.CrossRefGoogle Scholar
  22. 22.
    Canadian Soil Quality Guidelines. Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs): Environmental and Human Health Effects, Canadian Council of Ministers of the Environment, 2010.Google Scholar
  23. 23.
    Chung, M.K., Hu, R., Cheung, K.C., et al., Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons, Chemosphere, 2007, vol. 67, no. 3, pp. 464–473.CrossRefGoogle Scholar
  24. 24.
    Ministry of Housing, Spatial Planning, and Environment of Netherlands, Circular on target values and intervention values for soil remediation: DBO/1999226863, Neth. Gov. Gazette, 2000, no. 39, Feb. 4.Google Scholar
  25. 25.
    Desaules, A., Amann, S., Blum, F., et al., PAH and PCB in soils of Switzerland–status and critical review, J. Environ. Monit., 2008, vol. 10, no. 11, pp. 1265–1277.CrossRefGoogle Scholar
  26. 26.
    Fadzil, M.F., Tahir, N.M., Khairul, W.M., et al., Concentration and distribution of polycyclic aromatic hydrocarbons (PAHs) in the town of Kota Bharu, Kelantan Darul Naim, Malays. J. Anal. Sci., 2009, vol. 12, no. 3, pp. 609–618.Google Scholar
  27. 27.
    IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 92. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, Lyon, France. 2010.Google Scholar
  28. 28.
    Li, B., Feng, C., Li, X., et al., Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze estuary, China, Mar. Pollut. Bull., 2012, vol. 64, no. 3, pp. 636–643.CrossRefGoogle Scholar
  29. 29.
    Maliszewska-Kordybach, B., Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination, Appl. Geochem., 1996, vol. 11, nos. 1–2, pp. 121–127.CrossRefGoogle Scholar
  30. 30.
    Nisbet, I.C. and LaGoy, P.K., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regul. Toxicol. Pharmacol., 1992, vol. 16, no. 3, pp. 290–300.CrossRefGoogle Scholar
  31. 31.
    Provisional Guidance for Quantitative Risk Assessment of PAH, EPA/600/R-93/089, Cincinnati: United States Environ. Prot. Agency, 1993.Google Scholar
  32. 32.
    Wang, G., Mielke, H.W., Quach, V., et al., Determination of polycyclic aromatic hydrocarbons and trace metals in New Orleans soils and sediments, Soil Sediment Contam., 2004, vol. 13, pp. 313–327.CrossRefGoogle Scholar
  33. 33.
    Wang, X.S., Zhang, P., Zhou, H.Y., et al., Polycyclic aromatic hydrocarbons (PAHs) in urban topsoils: concentration and source analysis in Xuzhou, China, Int. J. Environ. Stud., 2012, vol. 69, no. 4, pp. 602–615.CrossRefGoogle Scholar
  34. 34.
    Wilcke, W., Polycyclic aromatic hydrocarbons (PAHs) in soil–a review, J. Plant Nutr. Soil Sci., 2000, vol. 163, no. 6, pp. 229–248.CrossRefGoogle Scholar
  35. 35.
    Xiao, R., Bai, J., Wang, J., et al., Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: toxic levels, sources, and relationships with soil organic matter and water-stable aggregates, Chemosphere, 2014, vol. 110, pp. 8–16.CrossRefGoogle Scholar
  36. 36.
    Yunker, M.B., Macdonald, R.W., Vinogarzan, R., et al., PAHs in the Fraser River basin: a critical appraisal of PAH rations as indicators of PAH source and composition, Org. Geochem., 2002, vol. 33, no. 4, pp. 489–515.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • G. I. Agapkina
    • 1
  • V. V. Stolbova
    • 1
  • E. S. Brodskiy
    • 2
  • A. A. Shelepchikov
    • 2
  • D. B. Feshin
    • 3
  1. 1.Department of Soil ScienceMoscow State UniversityMoscowRussia
  2. 2.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  3. 3.Generium International Biotechnological CenterMoscowRussia

Personalised recommendations