Skip to main content
Log in

Source Level Protection for HEVC Video Coded in Low Delay Mode for Real-Time Applications

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The increase in demand for video delivery over the last few years has led to a need for more compression efficiency. High efficiency video coding (HEVC) offers a better compression rate compared to the preceding standard codecs. However, the robustness of the coded stream is reduced in the low delay mode used for real-time applications. When a bitstream is transmitted over a hostile network, there is a high probability of burst network packet loss which can result in the loss of the entire frame. To deal with these signal degradations that occur in the transmission channel, an HEVC encoder adaptation scheme based on spatial multiple description coding (MDC) is proposed. A comparative study with the single description coding (SDC) scheme has shown its efficiency in improving the quality of the reconstructed video in the five packet loss cases studied and yields an average gain of about 14 to 35.57%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Cisco, Cisco visual networking index: Forecast and trends, 2017–2022, San Jose, Calif.: Cisco, 2019.

  2. UNESCO. Distance learning solutions, 2020. https://en.unesco.org/covid19/educationresponse/solutions. Cited June 2021.

  3. Alashhab, Z. R., Anbar, M., Singh, M.M., Leau, Y.B., Al-Sai, Z.A., and Alhayja’a, S.A., Impact of coronavirus pandemic crisis on technologies and cloud computing applications, J. Electron. Sci. Technol., 2021, vol. 19, no. 1, p. 100059. https://doi.org/10.1016/j.jnlest.2020.100059

    Article  Google Scholar 

  4. Frnda, J., Voznak, M., and Sevcik, L., Impact of packet loss and delay variation on the quality of real-time video streaming, Telecommun. Syst., 2016, vol. 62, no. 2, pp. 265–275. https://doi.org/10.1007/s11235-015-0037-2

    Article  Google Scholar 

  5. Paulikas, S., Gursnys, D., Anskaitis, A., and Saltis, A. The impact of packet loss on quality of H. 264/AVC video streaming, Elektron. Elektrotechnika, 2016, vol. 22, no. 2, pp. 81–85. https://doi.org/10.5755/j01.eie.22.2.14596

    Article  Google Scholar 

  6. QoS and QoE Management in UMTS Cellular Systems, Soldani, D., Li, M., and Cuny, R., Eds., Chichester, England: John Wiley & Sons, 2007.

    Google Scholar 

  7. Recommendation ITU-T P.800.1: Mean opinion score (MOS) terminology. https://www.itu.int/rec/T-REC-P.800.1. Cited June 2021.

  8. Hojati, S., Kazemi, M., and Moallem, P., Error concealment with parallelogram partitioning of the lost area, Multimedia Tools Appl., 2019, vol. 79, pp. 7449–7469. https://doi.org/10.1007/s11042-019-08538-5

    Article  Google Scholar 

  9. Oztas, B., Pourazad, M.T., Nasiopoulos, P., and Leung, V.C., A study on the HEVC performance over lossy networks, 19th IEEE Int. Conf. on Electronics, Circuits, and Systems (ICECS 2012), Seville, 2012, IEEE, 2012, pp. 785–788. https://doi.org/10.1109/ICECS.2012.6463542

  10. Carreira, J.F., Assunção, P.A., de Faria, S.M., Ekmekcioglu, E., and Kondoz, A., A two-stage approach for robust HEVC coding and streaming, IEEE Trans. Circuits Syst. Video Technol., 2017, vol. 28, no. 8, pp. 1960–1973. https://doi.org/10.1109/TCSVT.2017.2691471

    Article  Google Scholar 

  11. Kulupana, G., Talagala, D. S., Arachchi, H. K., and Fernando, A., End user video quality prediction and coding parameters selection at the encoder for robust HEVC video transmission, IEEE Trans. Circuits Syst. Video Technol., 2018, vol. 29, no. 11, pp. 3367–3381. https://doi.org/10.1109/TCSVT.2018.2879956

    Article  Google Scholar 

  12. Kazemi, M., Ghanbari, M., and Shirmohammadi, S., A review of temporal video error concealment techniques and their suitability for HEVC and VVC, Multimedia Tools Appl., 2021, vol. 80, no. 8, pp. 12685–12730. https://doi.org/10.1007/s11042-020-10333-6

    Article  Google Scholar 

  13. Kramer, A., Improving communication reliability by use of an intermittent feedback channel, IEEE Trans. Inf. Theory, 1969, vol. 15, no. 1, pp. 52–60. https://doi.org/10.1109/TIT.1969.1054272

    Article  MATH  Google Scholar 

  14. Garrido Abenza, P.P., Malumbres, M.P., Piñol, P., and López-Granado, O., Source coding options to improve HEVC video streaming in vehicular networks, Sensors, 2018, vol. 18, no. 9, p. 3107. https://doi.org/10.3390/s18093107

    Article  Google Scholar 

  15. Chen, H., Zhao, Ch., Sun, M.-T., and Drake, A., Adaptive intra-refresh for low-delay error-resilient video coding, J. Visual Commun. Image Representation, 2015, vol. 31, pp. 294–304. https://doi.org/10.1016/j.jvcir.2015.06.018

    Article  Google Scholar 

  16. Lin, Ch., Zhao, Ya., Tillo, T., and Xiao, J., Multiple description coding for stereoscopic videos with stagger frame order, IEEE Trans. Circuits Syst. Video Technol., 2014, vol. 25, no. 6, pp. 1016–1025. https://doi.org/10.1109/TCSVT.2014.2367391

    Article  Google Scholar 

  17. Kazemi, M., Iqbal, R., and Shirmohammadi, S., Redundancy allocation based on the weighted mismatch-rate slope for multiple description video coding, IEEE Trans. Multimedia, 2016, vol. 19, no. 1, pp. 54–66. https://doi.org/10.1109/TMM.2016.2607342

    Article  Google Scholar 

  18. Kazemi, M., Shirmohammadi, S., and Sadeghi, K.H., A review of multiple description coding techniques for error-resilient video delivery, Multimedia Syst., 2014, vol. 20, no. 3, pp. 283–309. https://doi.org/10.1007/s00530-013-0319-z

    Article  Google Scholar 

  19. Boumehrez, F., Brai, R., Doghmane, N., and Mansouri, K., Quality of experience enhancement of high efficiency video coding video streaming in wireless packet networks using multiple description coding, J. Electron. Imaging, 2018, vol. 27, no. 1, p. 013028. https://doi.org/10.1117/1.JEI.27.1.013028

    Article  Google Scholar 

  20. Ibrahim, N. K., Sali, A., Karim, H. A., Ramli, A. F., Ibrahim, N. S., and Grace, D., Multiple description coding for enhancing outage and video performance over relay-assisted cognitive radio networks, IEEE Access, 2022, vol. 10, pp. 11750–11762. https://doi.org/10.1109/ACCESS.2022.3146396

    Article  Google Scholar 

  21. Kazemi, M., End-to-end distortion modeling and channel adaptive optimization of mixed layer multiple description coding scheme, Comput. Intell. Electr. Eng., 2021, vol. 12, no. 4, pp. 31–42. https://doi.org/10.22108/isee.2019.118706.1266

    Article  Google Scholar 

  22. Psannis, K.E., HEVC in wireless environments, J. Real-Time Image Process., 2016, vol. 12, no. 2, pp. 509–516. https://doi.org/10.1007/s11554-015-0514-6

    Article  Google Scholar 

  23. FFmpeg Developers. 2020.ffmpeg tool (Version 4.3.1). https://ffmpeg.org/. Cited June 2021.

  24. Paudyal, P., Battisti, F., and Carli, M., Evaluation of the effects of transmission impairments on perceived video quality by exploiting ReTRiEVED dataset, J. Electron. Imaging, 2017, vol. 26, no. 2, p. 023003. https://doi.org/10.1117/1.JEI.26.2.023003

    Article  Google Scholar 

  25. P. ITU-T RECOMMENDATION, Subjective video quality assessment methods for multimedia applications, 1999.

  26. Lebreton, P., Robitza, W., and Göring, S., 2016–2018. SI TI tool. https://github.com/Telecommunication-Telemedia-Assessment/SITI. Cited June 2021.

  27. HM, reference software for HEVC (version 16.11). https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/. Cited January 2020.

  28. Bossen, F., Common HM test conditions and software reference configurations, JCT-VC I1100, 9th Meeting of Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/ IEC JTC1/SC29/WG11, Geneva, 2012.

  29. Liu, C., Ma, R., and Zhang, Z., Error concealment for whole frame loss in HEVC, Advances on Digital Television and Wireless Multimedia Communications, Zhang, W., Yang, X., Xu, Z., An, P., Liu, Q., and Lu, Y., Eds., Berlin: Springer, 2012, pp. 271–277. https://doi.org/10.1007/978-3-642-34595-1_38

  30. Dymarski, P., Kula, S., and Huy, T.N., QoS conditions for VoIP and VoD, J. Telecommun. Inf. Technol., 2011, pp. 29–37.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Khalfa, Saliha Harize or Nasreddine Kouadria.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sara Khalfa, Harize, S. & Kouadria, N. Source Level Protection for HEVC Video Coded in Low Delay Mode for Real-Time Applications. Aut. Control Comp. Sci. 57, 305–316 (2023). https://doi.org/10.3103/S0146411623030057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411623030057

Keywords:

Navigation