Skip to main content
Log in

Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sun, B., Zeng, S., Kang, R., and Pecht, M. Benefits analysis of prognostics in systems, Prognostics and System Health Management Conf., Macao, China, 2010, IEEE, 2010, pp. 1–8.  https://doi.org/10.1109/PHM.2010.5413503

  2. Gouriveau, R., Medjaher, K., Ramasso, E., and Zerhouni, N., PHM-Prognostics and health management— De la surveillance au pronostic de défaillances de systèmes complexes, Tech. Ing. Maintenance, 2013, vol. TIP095WEB, p. mt9570.  https://doi.org/10.51257/a-v1-mt9570

  3. Atamuradov, V. Medjaher, K., Dersin, P., Lamoreux, B., and Zerhouni, N., Prognostics and health management for maintenance practitioners—Review, implementation and tools evaluation, Int. J. Prognostics Health Manage., 2017, vol. 8, no. 3, pp. 1–31.  https://doi.org/10.36001/ijphm.2017.v8i3.2667

    Article  Google Scholar 

  4. Gouriveau, R., Medjaher, K., and Zerhouni, N., Du concept de PHM à la maintenance prédictive 1: Surveillance et prognostic, London: ISTE Editions, 2017.

    Google Scholar 

  5. Remadna, I., Terrissa, S.L., Zemouri, R., and Ayad, S., An overview on the deep learning based prognostic, Int. Conf. on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 2018, IEEE, 2018, pp. 196–200.  https://doi.org/10.1109/ASET.2018.8379858

  6. Jain, A.K. and Lad, B.K., Predicting remaining useful life of high speed milling cutters based on artificial neural network, Int. Conf. on Robotics, Automation, Control and Embedded Systems (RACE), Chennai, India, 2015, IEEE, 2015, pp. 1–5. https://doi.org/10.1109/RACE.2015.7097283

  7. Tian, Z., An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring, J. Intell. Manuf., 2012, vol. 23, pp. 227–237. https://doi.org/10.1007/s10845-009-0356-9

    Article  Google Scholar 

  8. Mahamad, A.K., Saon, S., and Hiyama, T., Predicting remaining useful life of rotating machinery based artificial neural network, Comput. Math. Appl., 2010, vol. 60, no. 4, pp. 1078–1087.  https://doi.org/10.1016/j.camwa.2010.03.065

    Article  MATH  Google Scholar 

  9. Zheng, S., Ristovski, K., Farahat, A., and Gupta, C., Long short-term memory network for remaining useful life estimation, IEEE Int. Conf. on Prognostics and Health Management (ICPHM), Dallas, Texas, 2017, IEEE, 2017. https://doi.org/10.1109/ICPHM.2017.7998311

  10. Zhao, R., Wang, J., Yan, R., and Mao, K., Machine health monitoring with LSTM networks, 10th Int. Conf. on Sensing Technology (ICST), Nanjing, China, 2016, IEEE, 2016, pp. 1–6. https://doi.org/10.1109/ICSensT.2016.7796266

  11. Zhang, J., Wang, P., Yan, R., and Gao, R.X., Long short-term memory for machine remaining life prediction, J. Manuf. Syst., 2018, vol. 48C, pp. 78–86. https://doi.org/10.1016/j.jmsy.2018.05.011

    Article  Google Scholar 

  12. Babu, G.S., Zhao, P., and Li, X.-L., Deep convolutional neural network based regression approach for estimation of remaining useful life, Database Systems for Advanced Applications. DASFAA 2016, Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, X., and Xiong, H., Lecture Notes in Computer Science, vol. 9642, Cham: Springer, 2016, pp. 214–228.  https://doi.org/10.1007/978-3-319-32025-0_14

    Book  Google Scholar 

  13. Li, X., Ding, Q., and Sun, J.-Q., Remaining useful life estimation in prognostics using deep convolution neural networks, Reliab. Eng. Syst. Safety, 2018, vol. 172, pp. 1–11.  https://doi.org/10.1016/j.ress.2017.11.021

    Article  Google Scholar 

  14. Remadna, I., Terrisa, L.S., Ayad, S., and Zerhouni, N., RUL estimation enhancement using hybrid deep learning methods, Int. J. Prognostics Health Manage., 2021, vol. 12, no. 1.  https://doi.org/10.36001/ijphm.2021.v12i1.2378

  15. Sayah, M., Guebli, D., Zerhouni, N., and Al Masry, Z., Towards distribution clustering-based deep LSTM model for RUL prediction, Prognostics and Health Management Conf. (PHM-Besançon), Besancon, France, 2020, IEEE, 2020, pp. 253–256.  https://doi.org/10.1109/PHM-Besancon49106.2020.00049

  16. Heimes, F.O., Recurrent neural networks for remaining useful life estimation, Int. Conf. on Prognostics and Health Management, Denver, Colo., 2008, IEEE, 2008, pp. 1–6.  https://doi.org/10.1109/PHM.2008.4711422

  17. Yuan, M., Wu, Yu., and Lin, Li, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, IEEE Int. Conf. on Aircraft Utility Systems (AUS), Beijing, 2016, IEEE, 2016, pp. 135–140.  https://doi.org/10.1109/AUS.2016.7748035

  18. Aydin, O. and Guldamlasioglu, S., Using LSTM networks to predict engine condition on large scale data processing framework, 4th Int. Conf. on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 2017, IEEE, 2017, pp. 281–285.  https://doi.org/10.1109/ICEEE2.2017.7935834

  19. Saxena, A. and Goebel, K., Turbofan engine degradation simulation data set, NASA Ames Prognostics Data Repository, 2008. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan.

  20. Zroug, S., Kahloul, L., Benharzallah, S., and Djouani, K., A hierarchical formal method for performance evaluation of WSNs protocol, Computing, 2021, vol. 103, pp. 1183–1208.  https://doi.org/10.1007/s00607-020-00898-3

    Article  MathSciNet  MATH  Google Scholar 

  21. He, K. and Sun, J., Convolutional neural networks at constrained time cost, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, 2015, IEEE, 2015, pp. 5353–5360.  https://doi.org/10.1109/CVPR.2015.7299173

  22. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Comput., 1997, vol. 9, no. 8, pp. 1735–1780.  https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Remadna, S. L. Terrissa or M. Sayah.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remadna, I., Terrissa, S.L., Sayah, M. et al. Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture. Aut. Control Comp. Sci. 56, 300–310 (2022). https://doi.org/10.3103/S014641162204006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014641162204006X

Keywords:

Navigation