Skip to main content
Log in

Requirements on Providing a Sustainability of Industrial Internet of Things

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This article studies the definitions of industrial Internet of Things (IIoT) used by the contemporary academic community. The study helps derive the most suitable definition of IIoT for contemporary developments. In addition, the article considers the phenomenon of sustainability as a sum of requirements on modern IIoT systems. As a result, requirements on industrial Internet of Things are imposed that will maintain the sustainability of process systems in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ulltveit-Moe, N., Nergaard, H., and Erdödi, L., Gjøsæter, T., Kolstad, E. and Berg, P., Secure information sharing in an industrial Internet of Things, 2016. arXiv:1601.04301 [cs.CR]

  2. Aberle, L., A comprehensive guide to enterprise IoT project success, IoT Agenda, 2015. http://internetofthingsagenda.techtarget.com/essentialguide/A-comprehensive-guide-to-enterprise-IoT-project-success. Cited September 10, 2020.

  3. Conway, J., The industrial Internet of Things: An evolution to a smart manufacturing enterprise, Schneider Electric Whitepaper, 2015. https://it-resource.schneider-electric.com/white-papers/the-industrial-internet-of-things-an-evolution-to-a-smart-manufacturing-enterprise. Cited October 5, 2020.

  4. Helmir, P., Open source in industrial internet of things: A systematic literature review, Master’s Thesis, Lappeenranta: Lappeenranta Univ. of Technology, 2018.

  5. Boyes, H., Hallaq, B., Cunningham, J., and Watson, T., The industrial internet of things (IIoT): An analysis framework, Comput. Ind., 2018, vol. 101, pp. 1–12. https://doi.org/10.1016/j.compind.2018.04.015

    Article  Google Scholar 

  6. Strigin, L., Resilience: What is it, and how much do we want?, IEEE Secur. Privacy, 2012, vol. 10, no. 3, pp. 72–75. https://doi.org/10.1109/MSP.2012.74

    Article  Google Scholar 

  7. Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., Moscow, 2019, Basarab, M. and Markov, A.S., Eds., Moscow: CEUR Workshop Proceedings, 2019, pp. 60–64.

  8. Zegzhda, P.D., Zegzhda, D.P., and Stepanova, T.V., Approach to the construction of the generalized functional-semantic cyber security model, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 627–633.  https://doi.org/10.3103/S0146411615080192

    Article  Google Scholar 

  9. Zegzhda, D., Zegzhda, P., Pechenkin, A., and Poltavtseva, M., Modeling of information systems to their security evaluation, Proc. 10th Int. Conf. on Security of Information and Networks, Jaipur, India, 2017, New York: Association for Computing Machinery, 2017, pp. 295–298.  https://doi.org/10.1145/3136825.3136857

  10. Vert, N.S., Volkova, A.S., Zegzhda, D.P., and Kalinin, M.O., Maintenance of sustainable operation of pipeline-parallel computing systems in the cloud environment, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 713–720.  https://doi.org/10.3103/S0146411615080167

    Article  Google Scholar 

  11. Zegzhda, D.P. and Pavlenko, E.Yu., Cyber-sustainability of software-defined networks based on situational management, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 984–992.  https://doi.org/10.3103/S0146411618080291

    Article  Google Scholar 

  12. Kalinin, M.O., Zegzhda, D.P., and Zegzhda, P.D., IT systems security monitoring and control via advanced concern with integrity property, Int. Conf. on Information Security and Privacy, Orlando, Fla., 2010, 2010, pp. 74–79.

  13. Zegzhda, D.P., Zegzhda, P.D., and Kalinin, M.O., Clarifying integrity control at the trusted information environment, Computer Network Security. MMM-ACNS 2010, Kotenko, I. and Skormin, V., Eds., Lecture Notes in Computer Science, vol. 6528, Berlin: Springer, 2010, pp. 337–344.  https://doi.org/10.1007/978-3-642-14706-7_27

    Book  Google Scholar 

  14. Kalinin, M.O., Permanent protection of information systems with method of automated security and integrity control, Proc. 3rd Int. Conf. on Security of Information and Networks, Taganrog, Russia, 2010, New York: Association for Computing Machinery, 2010, pp. 118–123.  https://doi.org/10.1145/1854099.1854125

  15. Zegzhda, P., Zegzhda, D., Kalinin, M., Pechenkin, A., Minin, A., and Lavrova, D., Safe integration of SIEM systems with Internet of Things: Data aggregation, integrity control, and bioinspired safe routing, Proc. 9th Int. Conf. on Security of Information and Networks, Newark, N.J., 2016, New York: Association for Computing Machinery, 2016, pp. 81–87.  https://doi.org/10.1145/2947626.2947639

  16. Pavlenko, E., Zegzhda, D., and Poltavtseva, M., Ensuring the sustainability of cyberphysical systems based on dynamic reconfiguration, IEEE Int. Conf. on Industrial Cyber Physical Systems (ICPS), Taipei, 2019, IEEE, 2019, pp. 785–789.  https://doi.org/10.1109/ICPHYS.2019.8780193

  17. Krundyshev, V., Kalinin, M., and Zegzhda, P., Artificial swarm algorithm for vanet protection against routing attacks, IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, 2018, IEEE, 2018, pp. 795–800. https://doi.org/10.1109/ICPHYS.2018.8390808

  18. Zegzhda, D.P. and Pavlenko, E.Yu., Cyber-physical system homeostatic security management, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 805–816.  https://doi.org/10.3103/S0146411617080260

    Article  Google Scholar 

  19. Delic, K.A. and Penkler, D.M., Architecting resilient IoT systems, 2018. www.researchgate.net/publication/331072091_Architecting_Resilient_IoT_Systems/stats. Cited October 6, 2020.

  20. Delic, K.A., On resilience of IoT systems: The Internet of Things (ubiquity symposium), Ubiquity, 2016, vol. 2016, no. February, p. 1. https://doi.org/10.1145/2822885

    Article  Google Scholar 

  21. Lin, S., Crawford, M., and Mellor, S., The industrial Internet of Things, Volume G1: Reference Architecture, 2017. https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf. Cited February 19, 2019.

  22. Sfar, A.R., Natalizio, E., Challal, Y., and Chtourou, Z., A roadmap for security challenges in the Internet of Things, Digital Commun. Networks, 2018, vol. 4, no. 2, pp. 118–137.  https://doi.org/10.1016/j.dcan.2017.04.003

    Article  Google Scholar 

  23. Le, Q., Ngo-Quynh, T., and Magedanz, T., RPL-based multipath routing protocols for Internet of Things on wireless sensor networks, Int. Conf. on Advanced Technologies for Communications (ATC 2014), Hanoi, 2014, IEEE, 2014, pp. 424–429.  https://doi.org/10.1109/ATC.2014.7043425

  24. Pavković, B., Theoleyre, F., and Duda, A., Multipath opportunistic RPL routing over IEEE 802.15.4, Proc. 14th ACM Int. Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Miami, 2011, New York: Association for Computing Machinery, 2011, pp. 179–186. https://doi.org/10.1145/2068897.2068929

  25. Abreu, D.P., Velasquez, K., Curado, M., and Monteiro, E., A resilient Internet of Things architecture for smart cities, Ann. Telecommun., 2017, vol. 72, nos. 1–2, pp. 19–30.  https://doi.org/10.1007/s12243-016-0530-y

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (IS grant), project no. 20/2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Dakhnovich, D. A. Moskvin or D. P. Zegzhda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Kuznetsov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhnovich, A.D., Moskvin, D.A. & Zegzhda, D.P. Requirements on Providing a Sustainability of Industrial Internet of Things. Aut. Control Comp. Sci. 55, 956–961 (2021). https://doi.org/10.3103/S0146411621080071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411621080071

Keywords:

Navigation