Skip to main content
Log in

On n-Dimensional Simplices Satisfying Inclusions \(S \subset {{[0,1]}^{n}} \subset nS\)

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Let \(n \in \mathbb{N}\), \({{Q}_{n}} = {{[0,1]}^{n}}.\) For a nondegenerate simplex \(S \subset {{\mathbb{R}}^{n}}\), by \(\sigma S\) we denote the homothetic image of \(S\) with center of homothety in the center of gravity of \(S\) and ratio of homothety \(\sigma \). By \({{d}_{i}}(S)\) we mean the \(i\)th axial diameter of \(S\), i. e. the maximum length of a line segment in \(S\) parallel to the \(i\)th coordinate axis. Let \(\xi (S) = min{\text{\{ }}\sigma \geqslant 1:{{Q}_{n}} \subset \sigma S{\text{\} }},\)\({{\xi }_{n}} = min{\text{\{ }}\xi (S):S \subset {{Q}_{n}}{\text{\} }}.\) By \(\alpha (S)\) we denote the minimal \(\sigma > 0\) such that \({{Q}_{n}}\) is contained in a translate of simplex \(\sigma S\). Consider \((n + 1) \times (n + 1)\)-matrix \({\mathbf{A}}\) with the rows containing coordinates of vertices of \(S\); last column of \({\mathbf{A}}\) consists of 1’s. Put \({{{\mathbf{A}}}^{{ - 1}}}\)\( = ({{l}_{{ij}}})\). Denote by \({{\lambda }_{j}}\) linear function on \({{\mathbb{R}}^{n}}\) with coefficients from the \(j\)th column of \({{{\mathbf{A}}}^{{ - 1}}}\), i.e. \({{\lambda }_{j}}(x) = {{l}_{{1j}}}{{x}_{1}} + \ldots + {{l}_{{nj}}}{{x}_{n}} + {{l}_{{n + 1,j}}}.\) Earlier the first author proved the equalities \(\tfrac{1}{{{{d}_{i}}(S)}} = \tfrac{1}{2}\sum\nolimits_{j = 1}^{n + 1} \left| {{{l}_{{ij}}}} \right|,\alpha (S) = \sum\nolimits_{i = 1}^n \tfrac{1}{{{{d}_{i}}(S)}}.\) In the present paper we consider the case \(S \subset {{Q}_{n}}\). Then all the \({{d}_{i}}(S) \leqslant 1\), therefore, \(n \leqslant \alpha (S) \leqslant \xi (S).\) If for some simplex \(S{\kern 1pt} {{'}} \subset {{Q}_{n}}\) holds \(\xi (S{\kern 1pt} {{'}}) = n,\) then \({{\xi }_{n}} = n\), \(\xi (S{\kern 1pt} {{'}}) = \alpha (S{\kern 1pt} {{'}})\), and \({{d}_{i}}(S{\kern 1pt} {{'}}) = 1\). However, such the simplices S ' exist not for all the dimensions \(n\). The first value of \(n\) with such a property is equal to \(2\). For each 2-dimensional simplex, \(\xi (S) \geqslant {{\xi }_{2}} = 1 + \tfrac{{3\sqrt 5 }}{5} = 2.34 \ldots > 2\). We have an estimate \(n \leqslant {{\xi }_{n}} < n + 1\). The equality \({{\xi }_{n}} = n\) takes place if there exist an Hadamard matrix of order \(n + 1\). Further investigation showed that \({{\xi }_{n}} = n\) also for some other \(n\). In particular, simplices with the condition \(S \subset {{Q}_{n}} \subset nS\) were built for any odd \(n\) in the interval \(1 \leqslant n \leqslant 11\). In the first part of the paper we present some new results concerning simplices with such a condition. If \(S \subset {{Q}_{n}} \subset nS\), then center of gravity of \(S\) coincide with center of \({{Q}_{n}}\). We prove that \(\sum\nolimits_{j = 1}^{n + 1} \left| {{{l}_{{ij}}}} \right| = 2\,(1 \leqslant i \leqslant n),\sum\nolimits_{i = 1}^n \left| {{{l}_{{ij}}}} \right| = \tfrac{{2n}}{{n + 1}}(1 \leqslant j \leqslant n + 1).\) Also we give some corollaries. In the second part of the paper we consider the following conjecture. Let for simplex \(S \subset {{Q}_{n}}\)an equality \(\xi (S) = {{\xi }_{n}}\) holds. Then \((n - 1)\)-dimensional hyperplanes containing the faces of \(S\) cut off from the cube \({{Q}_{n}}\) the equal-sized parts. Though it is true for \(n = 2\) and \(n = 3\), in general case this conjecture is not valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Klimov, V.S. and Ukhalov, A.Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki (Solving the Problems of Mathematical Analysis with the Use of Systems of Computer Mathematics), Yaroslavl: Yarosl. Gos. Univ., 2014.

  2. Malyshev, F.M., Family of equal-sized n-dimensional polyhedra satisfying Cavalieri’s principle, Math. Notes, 2015, vol. 97, no. 1, pp. 213–229.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nevskij, M.V., Inequalities for the norms of interpolating projections, Model. Anal. Inf. Sist., 2008, vol. 15, no. 3, pp. 28–37.

    Google Scholar 

  4. Nevskij, M.V., On a certain relation for the minimal norm of an interpolational projection, Model. Anal. Inf. Sist., 2009, vol. 16, no. 1, pp. 24–43.

    Google Scholar 

  5. Nevskii, M.V., On a property of n-dimensional simplices, Math. Notes, 2010, vol. 87, no. 4, pp. 543–555.

    Article  MathSciNet  MATH  Google Scholar 

  6. Nevskii, M.V., Geometricheskie otsenki v polinomial’noi interpolyatsii (Geometric Estimates in Polynomial Interpolation), Yaroslavl: Yarosl. Gos. Univ., 2012.

  7. Nevskii, M.V., Computation of the longest segment of a given direction in a simplex, Fundam. Prikl. Mat., 2013, vol. 18, no. 2, pp. 147–152.

    Google Scholar 

  8. Nevskii, M.V. and Ukhalov, A.Yu., On numerical characteristics of a simplex and their estimates, Autom. Control Comput. Sci., 2017, vol. 51, no. 7, pp. 757–769.

    Article  Google Scholar 

  9. Nevskii, M.V. and Ukhalov, A.Yu., New estimates of numerical values related to a simplex, Autom. Control Comput. Sci., 2017, vol. 51, no. 7, pp. 770–782.

    Article  Google Scholar 

  10. Hall, M., Jr., Combinatorial Theory, Waltham (Massachusets)–Toronto–London: Blaisdall Publishing Company, 1967.

  11. Frank, R. and Riede, H., Hyperplane sections of the n-dimensional cube, Am. Math. Mon., 2012, vol. 119, no. 10, pp. 868–872.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problem, Linear Algebra Appl., 1996, vol. 241–243, pp. 519–598.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lassak, M., Parallelotopes of maximum volume in a simplex, Discrete Comput. Geom., 1999, vol. 21, pp. 449–462.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mangano, S., Mathematica Cookbook, Cambridge: O’Reilly Media Inc., 2010.

    Google Scholar 

  15. Nevskii, M., Properties of axial diameters of a simplex, Discrete Comput. Geom., 2011, vol. 46, no. 2, pp. 301–312.

    Article  MathSciNet  MATH  Google Scholar 

  16. Scott, P.R., Lattices and convex sets in space, Q. J. Math. Oxford (2), 1985, vol. 36, pp. 359–362.

  17. Scott, P.R., Properties of axial diameters, Bull. Aust. Math. Soc., 1989, vol. 39, pp. 329–333.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Yury V. Bogomolov and Vladimir S. Klimov for valuable discussion and useful advice.

The work was supported by the initiative research of Yaroslavl State University VIP-008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Nevskii or A. Yu. Ukhalov.

Additional information

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevskii, M.V., Ukhalov, A.Y. On n-Dimensional Simplices Satisfying Inclusions \(S \subset {{[0,1]}^{n}} \subset nS\). Aut. Control Comp. Sci. 52, 667–679 (2018). https://doi.org/10.3103/S0146411618070192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618070192

Keywords:

Navigation