Automatic Control and Computer Sciences

, Volume 51, Issue 7, pp 576–585 | Cite as

Polyhedral Characteristics of Balanced and Unbalanced Bipartite Subgraph Problems

  • V. A. Bondarenko
  • A. V. Nikolaev
  • D. A. Shovgenov
Article

Abstract

We study the polyhedral properties of three problems of constructing an optimal complete bipartite subgraph (a biclique) in a bipartite graph. In the first problem, we consider a balanced biclique with the same number of vertices in both parts and arbitrary edge weights. In the other two problems we are dealing with unbalanced subgraphs of maximum and minimum weight with non-negative edges. All three problems are established to be NP-hard. We study the polytopes and the cone decompositions of these problems and their 1-skeletons. We describe the adjacency criterion in the 1-skeleton of the polytope of the balanced complete bipartite subgraph problem. The clique number of the 1-skeleton is estimated from below by a superpolynomial function. For both unbalanced biclique problems we establish the superpolynomial lower bounds on the clique numbers of the graphs of nonnegative cone decompositions. These values characterize the time complexity in a broad class of algorithms based on linear comparisons.

Keywords

biclique 1-skeleton cone decomposition clique number NP-hard problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apollonio, N. and Simeone, B., The maximum vertex coverage problem on bipartite graphs, Discrete Appl. Math., 2014, vol. 165, pp. 37–48.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arbib, C. and Mosca, R., Polynomial algorithms for special cases of the balanced complete bipartite subgraph problem, J. Comb. Math. Comb. Comput., 1999, vol. 39, pp. 3–22.MathSciNetMATHGoogle Scholar
  3. 3.
    Bondarenko, V.A., Nonpolynomial lowerbound of the traveling salesman problem complexity in one class of algorithms, Autom. Remote Control, 1983, vol. 44, no. 9, pp. 1137–1142.MATHGoogle Scholar
  4. 4.
    Bondarenko, V.A. and Maksimenko, A.N., Geometricheskie konstruktsii i slozhnost’ v kombinatornoi optimizatsii (Geometric Constructions and Complexity in Combinatorial Optimization), Moscow: LKI, 2008.Google Scholar
  5. 5.
    Bondarenko, V.A. and Nikolaev, A.V., Combinatorial and geometric properties of the max-cut and min-cut problems, Dokl. Math., 2013, vol. 88, no. 2, pp. 516–517.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bondarenko, V. and Nikolaev, A., On graphs of the cone decompositions for the min-cut and max-cut problems, Int. J. Math. Math. Sci., 2016, vol. 2016.Google Scholar
  7. 7.
    Bondarenko, V.A., Nikolaev, A.V., and Shovgenov, D.A., 1-skeletons of the spanning tree problems with additional constraints, Model. Anal. Inf. Syst., 2015, vol. 22, no. 4, pp. 453–463.CrossRefGoogle Scholar
  8. 8.
    Cheng, Y. and Church, G.M., Biclustering of expression data, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, pp. 93–103Google Scholar
  9. 9.
    Diestel, R., Graph Theory, Springer-Verlag Berlin Heidelberg, 2010.CrossRefMATHGoogle Scholar
  10. 10.
    Feige, U. and Kogan, S., Hardness of Approximation of the Balanced Complete Bipartite Subgraph Problem. Tech. Rep. MCS04-04, The Weizmann Inst. of Science, 2004.Google Scholar
  11. 11.
    Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, New York, NY: W. H. Freeman & Co, 1979.MATHGoogle Scholar
  12. 12.
    Grötschel, M., Lovasz, L., and Schrijver, A., Geometric Algorithms and Combinatorial Optimization, Springer-Verlag Berlin Heidelberg, 1993.CrossRefMATHGoogle Scholar
  13. 13.
    Johnson, D.S., The NP-completeness column: An ongoing guide, J. Algorithms, 1987, vol. 8, no. 3, pp. 438–448.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Joret, G. and Vetta, A., Reducing the rank of a matroid, Discrete Math. Theor. Comput. Sci., 2015, vol. 17, no. 2, pp. 143–156.MathSciNetMATHGoogle Scholar
  15. 15.
    Hopcroft, J.E. and Karp, R.M., An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput., 1973, vol. 2, no. 4, pp. 225–231.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Maksimenko, A.N., Combinatorial properties of the polyhedron associated with the shortest path problem, Comput. Math. Math. Phys., 2013, vol. 88, no. 2, pp. 1611–1614.Google Scholar
  17. 17.
    Mubayi, D. and Turàn, G., Finding bipartite subgraphs efficiently, Inf. Process. Lett., 2010, vol. 110, no. 5, pp. 174–177.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ravi, S.S. and Lloyd, E.L., The complexity of near-optimal programmable logic array folding, SIAM J. Comput., 1988, vol. 17, no. 4, pp. 696–710.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. A. Bondarenko
    • 1
  • A. V. Nikolaev
    • 1
  • D. A. Shovgenov
    • 1
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations