Advertisement

Automatic Control and Computer Sciences

, Volume 50, Issue 7, pp 453–459 | Cite as

Cellular-local algorithm for localizing and estimating of changes in binary images

  • A. A. KorotkinEmail author
  • A. A. Maksimov
Article
  • 33 Downloads

Abstract

In this paper, we consider the problem of detection of changes and degree estimation of these changes in a dynamically changing binary image. The authors introduce the numerical characteristic degree of change areas in dynamically changing binary images based on the Jaccard similarity coefficient. To calculate this characteristic, the authors developed an original architecture of a twodimensional cellular automaton with the diffusion dynamics. We establish that cellular automaton configurations converge to a stationary configuration. The stationary configuration of a cellular automaton defines the desired characteristics for each area in dynamically changing binary images. The result can be presented as a grayscale image, which greatly facilitates the visual analysis of the dynamics of changes in binary images. The suggested approach can be used to detect and numerically estimate changes in the case when a number of brightness gradation comprises more than two values.

Keywords

image comparison cellular automaton diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kashkin, V.B. and Sukhinin, A.I., Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazhenii (Remote Sensing of the Earth from Space. Digital Image Processing), Moscow: Logos, 2001.Google Scholar
  2. 2.
    Preston, K.J., Duff, M.J.B., Levialdi, S., Norgren, P.E., and Toriwaki, J., Basics on cellular logic with some applications in medical image processing, Proc. IEEE, 1979, vol. 67, no. 5, pp. 826–857.CrossRefGoogle Scholar
  3. 3.
    Preston, K. and Duff, M., Modern Cellular Automata. Theory and Applications, Plenum Press, 1984.CrossRefzbMATHGoogle Scholar
  4. 4.
    Rosin, P.L., Training cellular automata for image processing, Image Anal., Lect. Notes Comput. Sci, 2005, vol. 3540, pp. 195–204.CrossRefGoogle Scholar
  5. 5.
    Toffoli, T. and Margolus, N., Cellular Automata Machines, Cambridge: MIT Press, 1987.zbMATHGoogle Scholar
  6. 6.
    Weickert, J., Theoretical Foundations of Anisotropic Diffusion in Image Processing, Teubner Verlag, Stuttgart, 1998.zbMATHGoogle Scholar
  7. 7.
    Borisenko, G.V. and Denisov, A.M., Nonlinear source in diffusion filtering methods for image processing, Comput. Math. Math. Phys., 2007, vol. 47, no. 10, pp. 1631–1635.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bandman, O.L., Cellular automata models of spatial dynamics, in Sistemnaya informatika (System Informatics), Novosibirsk, 2006, vol. 10, pp. 59–113.Google Scholar
  9. 9.
    Korotkin, A.A. and Majorov, V.V., A neural network with diffusive interaction between elements for selecting changes in a dynamic image, Comput. Math. Math. Phys., 2000, vol. 40, pp. 287–292.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Marmanis, H. and Babenko, D., Algorithms of the Intelligent Web. Manning Publications Co., 2009.Google Scholar
  11. 11.
    Kaneko, K., Theory and Application of Coupled Map Lattices, John Wiley & Sons Ltd, 1993.zbMATHGoogle Scholar
  12. 12.
    Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1957, vol. 1, 2d ed.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia
  2. 2.Severnii Bank OJSC Sberbank of RussiaYaroslavlRussia

Personalised recommendations