Skip to main content
Log in

On two predictors of calculable chains of quasi-orthogonal matrices

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The general definition of quasi-orthogonal matrices, the definition of low-level matrices, and partial definitions of quasi-orthogonal Mersenne and Euler matrices are considered. New quasi-orthogonal symmetric Seidel matrices that exist on odd orders and three-level Legendre symbols used to calculate elements of these matrices are defined. A method to calculate Euler matrices via Mersenne matrices is given. A relation between asymmetric and symmetric odd-order Mersenne and Seidel matrices is shown to exist. A new, modified Sylvester method for calculating Euler matrices using symmetric circulant Seidel matrices is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadamard, J., Resolution d’une question relative aux determinants, Bull. Sci. Mathem., 1893, vol. 17, pp. 240–246.

    Google Scholar 

  2. Horadam, K.J., Hadamard Matrices and Their Applications. New York: Princeton University Press, 2007.

    Book  Google Scholar 

  3. Shalom, E., La conjecture de Hadamard. I. Image des Mathématique, 2015. http://images.math.cnrs.fr/html.

    Google Scholar 

  4. Walsh, J.L., A closed set of normal orthogonal functions, Amer. J. Math., 1923, vol. 45, pp. 5–24.

    Article  MathSciNet  Google Scholar 

  5. Silvester, J.J., Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colors, with applications to Newton’s rule, ornamental tile–work, and the theory of numbers, Philos.l Mag., 1867, vol. 34, pp. 461–475.

    Google Scholar 

  6. Paley, R.E.A.C., On orthogonal matrices, J. Mathem. Phys., 1933, vol. 12, pp. 311–320.

    Google Scholar 

  7. Scarpis, U., Sui determinanti di valore massimo, Rendiconti della R. Istituto Lombardo di Scienze e Lettere, 1898, vol. 31, pp. 1441–1446.

    Google Scholar 

  8. Sergeev, A.M., Generalized Mersenne’s matrices and Balonin’s Hypothesis, Avtom. Vychisl. Tekhn., 2014, no. 4, pp. 35–43.

    Google Scholar 

  9. Balonin, N.A., Sergeev, M.B., and Mironovskii, L.A., Calculation of HadamardMersenne matrices, Inform.Upravl. Sistemy, 2012, no. 5, pp. 92–94.

    Google Scholar 

  10. Balonin, N.A. and Sergeev, M.B., Two ways to construct Hadamard–Euler matrices, Inform.Upravl. Sistemy, 2013, no. 1, pp. 7–10.

    Google Scholar 

  11. Belevitch, V., Theorem of 2n-terminal networks with application to conference telephony, Electr. Commun, 1950, vol. 26, pp. 231–244.

    Google Scholar 

  12. Balonin, N.A. and Sergeev, M.B., On the issue of existence of Hadamard and Mersenne matrices, Inform. Upravl. Sistemy, 2013, no. 5, pp. 2–8.

    Google Scholar 

  13. Balonin, N.A. and Sergeev, M.B., Matrix of golden ratio G10, Inform.-Upravl. Sistemy, 2013, no. 6, pp. 2–5.

    Google Scholar 

  14. Balonin, N.A. and Sergeev, M.B., Quasiorthogonal local maximum determinant matrices. Appl. Mathem. Sci., 2015, vol. 9, no. 6. pp. 285–293. DOI:10.12988/ams.2015.4111000

    Google Scholar 

  15. Gilman, R.E., On the Hadamard determinant theorem and orthogonal determinants, Bull. Amer. Math. Soc., 1931, vol. 37, pp. 30–31.

    Google Scholar 

  16. Seidel, J.J., Strongly regular graphs with (–1, 1, 0) adjacency matrix having eigenvalue 3, Lin. Alg. Appl., 1968, vol. 1, pp. 281–298.

    Article  MathSciNet  Google Scholar 

  17. Bukhshtab, A.A., Teoriya chisel (Theory of Numbers), Moscow: Prosveshchenie, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Balonin.

Additional information

Original Russian Text © N.A. Balonin, A.A. Vostrikov, M.B. Sergeev, 2015, published in Avtomatika i Vychislitel’naya Tekhnika, 2015, No. 3, pp. 42–48.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balonin, N.A., Vostrikov, A.A. & Sergeev, M.B. On two predictors of calculable chains of quasi-orthogonal matrices. Aut. Control Comp. Sci. 49, 153–158 (2015). https://doi.org/10.3103/S0146411615030025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411615030025

Keywords

Navigation