Automatic Control and Computer Sciences

, Volume 48, Issue 4, pp 214–220 | Cite as

Generalized Mersenne matrices and Balonin’s conjecture

  • A. M. Sergeev


Properties of generalized Hadamard matrices and a conjecture on the existence of Mersenne matrices included into the former are discussed. A new classification of few-level quasi-orthogonal matrices, including matrices of even and odd orders, is presented. Matrices of Euler, Mersenne, and Hadamard are considered. The fundamental differences between the matrices of Mersenne and Fermat, which explain the failure of the proof of the Hadamard conjecture, are shown.


information processing compression masking orthogonal matrices quasi-orthogonal matrices Hadamard matrices Belevitch matrices Mersenne numbers Fermat numbers Euler-Fermat criterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sylvester, J.J., Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers, Philos. Mag., 1867, vol. 34, pp. 461–475.Google Scholar
  2. 2.
    Hadamard, J., Résolution d’une Question relative aux Determinants, Bull. Sci. Mathem., 1893, vol. 17, pp. 240–246.zbMATHGoogle Scholar
  3. 3.
    Balonin, N.A. and Sergeev, M.B., M-matrices, Inform.-Upravl. Sist., 2011, no. 1, pp. 14–21.Google Scholar
  4. 4.
    Belevitch, V., Theorem of 2n-terminal networks with application to conference telephony, Electr. Commun., 1950, vol. 26, pp. 231–244.Google Scholar
  5. 5.
    Gilman, R.E., On the Hadamard determinant theorem and orthogonal determinants, Bull. Amer. Math. Soc., 1931, vol. 37, pp. 30–31.zbMATHGoogle Scholar
  6. 6.
    Balonin, N.A., Sergeev, M.B., and Mironovskii, L.A., Computation of Hadamard-Mersenne matrices, Inform.-Upravl. Sist., 2012, no. 5, pp. 92–94.Google Scholar
  7. 7.
    Balonin, N.A. and Sergeev, M.B., The generalized Hadamard matrix norms, Vest. St.-Peterb. Univ. Ser. 10: Priklad. Matem., Inform., Prots. Upravl., 2014, no. 2, pp. 5–12.Google Scholar
  8. 8.
    Balonin, N.A., Sergeev, M.B., and Mironovskii, L.A., Calculation of Hadamard-Fermat Matrices, Inform.-Upravl. Sist., 2012, no. 6, pp. 90–93.Google Scholar
  9. 9.
    Balonin, N.A., Existence of Mersenne Matrices of 11th and 19th Orders, Inform.-Upravl. Sist., 2013, no. 2, pp. 89–90.Google Scholar
  10. 10.
    Balonin, N.A. and Sergeev, M.B., Two Ways to Construct Hadamard-Euler Matrices, Inform.-Upravl. Sist., 2013, no. 1, pp. 7–10.Google Scholar
  11. 11.
    Balonin, N.A. and Mironovskii, L.A., Hadamard matrices of odd order, Inform.-Upravl. Sist., 2006, no. 3, pp. 46–50.Google Scholar
  12. 12.
    Balonin, N.A. and Sergeev, M.B., On the Issue of Existence of Hadamard and Mersenne Matrices, Inform.-Upravl. Sist., 2013, no. 5, pp. 2–8.Google Scholar
  13. 13.
    Balonin, Yu.N., Vostrikov, A.A., and Sergeev, M.B., Applied Aspects of M-Matrix Use, Inform.-Upravl. Sist., 2012, no. 1, pp. 92–93.Google Scholar
  14. 14.
    Vostrikov, A.A. and Chernyshev, S.A., On distortion assessment of images masking with M-matrices, Nauchnotekhn. Vestn. Inform. Tekhnol., Mekhan. Opt., 2013, no. 5, pp. 99–103.Google Scholar
  15. 15.
    Vostrikov, A.A., Trends and progress evaluation of images and video compression for networks, Fundam. Issled., 2013, no. 8-2, pp. 263–268.Google Scholar
  16. 16.
    Vostrikov, A.A., On Hadamard-Mersenne matrices and image masking, Inform. Tekhnol., 2013, no. 11, pp. 37–39.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.St. Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia

Personalised recommendations