Skip to main content
Log in

Cluster approach to the efficient use of multimedia resources in information warfare in wikimedia

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript


The role of multimedia resources in information warfare in wikimedia is investigated. A new approach to uploading files in Wikimedia is proposed with the aim to enhance the impact of multimedia resources used for information warfare in Wikimedia. The proposed approach is based on clustering of media files accumulated in Wikimedia commons. Media file clustering is formalized as an optimization problem with control constraints. A PSO algorithm with adaptive parameters has been developed to solve the optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Hara, N., Shachaf, P., and Hew, K.F., Cross-cultural analysis of the Wikipedia community, J. Am. Soc. Inf. Sci. Technol., 2010, vol. 61, pp. 2097–2108.

    Article  Google Scholar 

  2. Alguliev, R.M., Alekperova, I.Ya., and Kasumova, R.T., Collective knowledge in Internet, Shestaya mezhdunarodnaya konferentsiya “Internet-Obrazovanie” (Proc. 6th Int. Conf. “Internet-Education”), Vinnitsa: Nauka, 2008.

    Google Scholar 

  3. Joseph, M. and Reagle, Jr., Be nice: Wikipedia norms for supportive communication. The new review of hypermedia and multimedia, Web Science, 2010, vol. 16, pp. 161–180.

    Google Scholar 


  5. Huang A., Similarity measures for text document clustering, in Proc. 6th New Zealand Computer Sci. Res. Student Conf. (NZCSRSC2008), Christchurch, New Zealand, 2008, pp.49–56.

  6. Wang, F., Zhang, C., and Li, T., Regularized clustering for documents, in Proc. 30th Ann. Int. ACM SIGIR Conf, (SIGIR’07), Amsterdam, The Netherlands, 2007, pp. 95–102.

  7. Das, S. and Konar, A., Automatic image pixel clustering with an improved differential evolution, Appl. Soft Compt., 2009, vo. 9, pp. 226–236.

    Article  Google Scholar 

  8. Das, S., Abraham, A., and Konar, A., Automatic clustering using an improved differential evolution algorithm, IEEE Trans. Syst., Man, Cybern. Part A: Systems and Humans, 2008, vol. 38, pp. 218–237.

    Article  Google Scholar 

  9. Han, J. and Kamber, M., Data Mining: Concepts and Techniques, 2nd ed., San Francisco: Morgan Kaufman, 2006.

    Google Scholar 

  10. Baeza-Yates, R. and Ribeiro-Neto, R., Modern Information Retrieval, New York: Addison Wesley, 1999.

    Google Scholar 

  11. Kalashnikov, D.V., Chen, Z.S., Mehrotra, S., and Nuray-Turan, R., Web people search via connection analysis, IEEE Trans. Knowledge Data Eng., 2008, vol. 20, pp. 1550–1565.

    Article  Google Scholar 

  12. Topic Detection and Tracking: Event-Based Information Organization, Allan, J., Ed., Kluwer Academic, Norwell, USA, 2002.

    Google Scholar 

  13. Alguliev, R.M. and Alyguliev, R.M., Automatic text documents summarization through sentences clustering, J. Autom. Inf. Sci., 2008, vol. 40, no. 9, pp. 53–63.

    Article  Google Scholar 

  14. Aliguliev, R.M., Alyguliev, R.M., and Bagirov, A.M., Global optimization in the summarization of text documents, Autom. Cont. Compt. Sci., 2005, vol. 39, pp. 42–47.

    Google Scholar 

  15. Aliguliyev, R.M., Automatic document summarization by sentence extraction, J. Compt. Technol., 2007, vol. 12, pp. 5–15.

    MATH  Google Scholar 

  16. Friedman, M., Last, M., Makover, Y., and Kandel, A., Anomaly detection in Web documents using crisp and fuzzy-based cosine clustering methodology, Inf. Sci., 2007, vol. 177, pp. 467–475.

    Article  Google Scholar 

  17. Grabmeier J., Rudolph A., Techniques of cluster algorithms in data mining, Data Mining and Knowledge Discovery 6, 2002, pp.303–360.

    Article  MathSciNet  Google Scholar 

  18. Chen, Y. and Bi, J., Clustering by maximizing sum-of-squared separation distance, Proc. Workshop on Clustering High Dimensional Data and its Applications, Newport Beach, USA, 2005, pp.1–12.

  19. Aliguliyev, R.M., A clustering method for document collections and algorithm for estimation the optimal number of clusters, Artif. Intell., 2006, vol. 4, pp. 651–659.

    Google Scholar 

  20. Bandyopadhyay, S. and Saha, S., A point symmetry-based clustering technique for automatic evolution of clusters, IEEE Trans. Knowledge Data Eng., 2008, vol. 20, pp. 1141–1157.

    Article  Google Scholar 

  21. Azzag, H., Venturini, G., Oliver, A., and Guinot, C., A hierarchical ant based clustering algorithm and its use in three real-world applications, Eur. J. Oper. Res., 2007, vol. 179, pp. 906–922.

    Article  MATH  Google Scholar 

  22. Rahurkar, M., Tsai, S.-F., Dagli, C., and Huang, T.S., Image interpretation using large corpus: wikipedia, Proc. IEEE, 2010, vol. 98, pp. 1509–1525.

    Article  Google Scholar 



  25. Holloway, T., Bozicevic, M., and Borner, K., Analyzing and visualizing the semantic coverage of Wikipedia and its authors, J. Complexity, 2007, vol. 12, pp. 30–40.

    Article  Google Scholar 

  26. Nakayama, K., Hara, T., and Nishio, S., Wikipedia mining for an association Web thesaurus construction, Proc. Int. Conf. on Web Information Systems Engineering (WISE), 2007, pp. 322–334.

    Google Scholar 

  27. Buriol, L.S., Castillo, C., Donato, D., Leonardi, S., and Millozzi, S., Temporal analysis of the wiki-graph, Proc. 2006 IEEE/WIC/ACM Int. Conf. on Web Intell., 2006, pp. 45–51.

    Google Scholar 

  28. Ito, M., Nakayama, K., Hara, T., and Nishio, S., Semantic relatedness measurement based on Wikipedia link cooccurrence analysis, Int. J. Web Inform. Syst., 2011, vol. 7, pp. 44–61.

    Article  Google Scholar 

  29. Manning, C.D., Raghavan, P., and Schutze, H., An introduction to information retrieval, Cambridge University, 2009p.

  30. Grabmeier, J. and Rudolph, A., Techniques of cluster algorithms in data mining, Data Mining Knowledge Discov., 2002, vol. 6, pp. 303–360.

    Article  MathSciNet  Google Scholar 

  31. Jain, A., Murty, M., and Flynn, P., Data clustering: A review, ACM Compt. Surveys, 1999, vol. 31, pp. 264–323.

    Article  Google Scholar 

  32. Kennedy, J. and Eberhart, R., Particle swarm optimization, Proc. IEEE Int. Conf. on Neural Network, Perth, Australia, 1995, pp. 1942–1948.

  33. Ratnaweera, A., Halgamuge, S.K., and Watson, H.C., Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evolut. Compt., 2004, vol. 8, pp. 240–255.

    Article  Google Scholar 

  34. Bergh, F., An analysis of particle swarm optimizers, PhD Thesis. Department of Computer Science, University of Pretoria, 2002.

    Google Scholar 

  35. Clerc, M. and Kennedy, J., The particle swarm-explosion stability, and convergence in a multi-dimensional complex space, IEEE Trans. Evolut. Compt., 2002, vol. 6, pp. 58–73.

    Article  Google Scholar 

  36. Martens, D., Baesens, B., and Fawcett, T., Editorial survey: swarm intelligence for data mining, Machine Learning, 2011, vol. 82, no. 1, pp. 1–42.

    Article  MathSciNet  Google Scholar 

  37. Kitayama, S., Arakawa, M., and Yamazaki, K., Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization, Struct. Multidiscipl. Optim., 2006, vol. 32, pp. 191–202.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. M. Alguliev.

Additional information

Original Russian Text © R.M. Alguliev, R.M. Aliguliyev, I.Ya. Alekperova, 2014, published in Avtomatika i Vychislitel’naya Tekhnika, 2014, No. 2, pp. 48–63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alguliev, R.M., Aliguliyev, R.M. & Alekperova, I.Y. Cluster approach to the efficient use of multimedia resources in information warfare in wikimedia. Aut. Control Comp. Sci. 48, 97–108 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: