Advertisement

Automatic Control and Computer Sciences

, Volume 48, Issue 2, pp 97–108 | Cite as

Cluster approach to the efficient use of multimedia resources in information warfare in wikimedia

  • R. M. Alguliev
  • R. M. Aliguliyev
  • I. Ya. Alekperova
Article

Abstract

The role of multimedia resources in information warfare in wikimedia is investigated. A new approach to uploading files in Wikimedia is proposed with the aim to enhance the impact of multimedia resources used for information warfare in Wikimedia. The proposed approach is based on clustering of media files accumulated in Wikimedia commons. Media file clustering is formalized as an optimization problem with control constraints. A PSO algorithm with adaptive parameters has been developed to solve the optimization problem.

Keywords

Wikimedia Wikimedia commons (WMC) information warfare clustering constrained optimization adaptive PSO algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hara, N., Shachaf, P., and Hew, K.F., Cross-cultural analysis of the Wikipedia community, J. Am. Soc. Inf. Sci. Technol., 2010, vol. 61, pp. 2097–2108.CrossRefGoogle Scholar
  2. 2.
    Alguliev, R.M., Alekperova, I.Ya., and Kasumova, R.T., Collective knowledge in Internet, Shestaya mezhdunarodnaya konferentsiya “Internet-Obrazovanie” (Proc. 6th Int. Conf. “Internet-Education”), Vinnitsa: Nauka, 2008.Google Scholar
  3. 3.
    Joseph, M. and Reagle, Jr., Be nice: Wikipedia norms for supportive communication. The new review of hypermedia and multimedia, Web Science, 2010, vol. 16, pp. 161–180.Google Scholar
  4. 4.
  5. 5.
    Huang A., Similarity measures for text document clustering, in Proc. 6th New Zealand Computer Sci. Res. Student Conf. (NZCSRSC2008), Christchurch, New Zealand, 2008, pp.49–56.Google Scholar
  6. 6.
    Wang, F., Zhang, C., and Li, T., Regularized clustering for documents, in Proc. 30th Ann. Int. ACM SIGIR Conf, (SIGIR’07), Amsterdam, The Netherlands, 2007, pp. 95–102.Google Scholar
  7. 7.
    Das, S. and Konar, A., Automatic image pixel clustering with an improved differential evolution, Appl. Soft Compt., 2009, vo. 9, pp. 226–236.CrossRefGoogle Scholar
  8. 8.
    Das, S., Abraham, A., and Konar, A., Automatic clustering using an improved differential evolution algorithm, IEEE Trans. Syst., Man, Cybern. Part A: Systems and Humans, 2008, vol. 38, pp. 218–237.CrossRefGoogle Scholar
  9. 9.
    Han, J. and Kamber, M., Data Mining: Concepts and Techniques, 2nd ed., San Francisco: Morgan Kaufman, 2006.Google Scholar
  10. 10.
    Baeza-Yates, R. and Ribeiro-Neto, R., Modern Information Retrieval, New York: Addison Wesley, 1999.Google Scholar
  11. 11.
    Kalashnikov, D.V., Chen, Z.S., Mehrotra, S., and Nuray-Turan, R., Web people search via connection analysis, IEEE Trans. Knowledge Data Eng., 2008, vol. 20, pp. 1550–1565.CrossRefGoogle Scholar
  12. 12.
    Topic Detection and Tracking: Event-Based Information Organization, Allan, J., Ed., Kluwer Academic, Norwell, USA, 2002.Google Scholar
  13. 13.
    Alguliev, R.M. and Alyguliev, R.M., Automatic text documents summarization through sentences clustering, J. Autom. Inf. Sci., 2008, vol. 40, no. 9, pp. 53–63.CrossRefGoogle Scholar
  14. 14.
    Aliguliev, R.M., Alyguliev, R.M., and Bagirov, A.M., Global optimization in the summarization of text documents, Autom. Cont. Compt. Sci., 2005, vol. 39, pp. 42–47.Google Scholar
  15. 15.
    Aliguliyev, R.M., Automatic document summarization by sentence extraction, J. Compt. Technol., 2007, vol. 12, pp. 5–15.zbMATHGoogle Scholar
  16. 16.
    Friedman, M., Last, M., Makover, Y., and Kandel, A., Anomaly detection in Web documents using crisp and fuzzy-based cosine clustering methodology, Inf. Sci., 2007, vol. 177, pp. 467–475.CrossRefGoogle Scholar
  17. 17.
    Grabmeier J., Rudolph A., Techniques of cluster algorithms in data mining, Data Mining and Knowledge Discovery 6, 2002, pp.303–360.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Chen, Y. and Bi, J., Clustering by maximizing sum-of-squared separation distance, Proc. Workshop on Clustering High Dimensional Data and its Applications, Newport Beach, USA, 2005, pp.1–12.Google Scholar
  19. 19.
    Aliguliyev, R.M., A clustering method for document collections and algorithm for estimation the optimal number of clusters, Artif. Intell., 2006, vol. 4, pp. 651–659.Google Scholar
  20. 20.
    Bandyopadhyay, S. and Saha, S., A point symmetry-based clustering technique for automatic evolution of clusters, IEEE Trans. Knowledge Data Eng., 2008, vol. 20, pp. 1141–1157.CrossRefGoogle Scholar
  21. 21.
    Azzag, H., Venturini, G., Oliver, A., and Guinot, C., A hierarchical ant based clustering algorithm and its use in three real-world applications, Eur. J. Oper. Res., 2007, vol. 179, pp. 906–922.CrossRefzbMATHGoogle Scholar
  22. 22.
    Rahurkar, M., Tsai, S.-F., Dagli, C., and Huang, T.S., Image interpretation using large corpus: wikipedia, Proc. IEEE, 2010, vol. 98, pp. 1509–1525.CrossRefGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
    Holloway, T., Bozicevic, M., and Borner, K., Analyzing and visualizing the semantic coverage of Wikipedia and its authors, J. Complexity, 2007, vol. 12, pp. 30–40.CrossRefGoogle Scholar
  26. 26.
    Nakayama, K., Hara, T., and Nishio, S., Wikipedia mining for an association Web thesaurus construction, Proc. Int. Conf. on Web Information Systems Engineering (WISE), 2007, pp. 322–334.Google Scholar
  27. 27.
    Buriol, L.S., Castillo, C., Donato, D., Leonardi, S., and Millozzi, S., Temporal analysis of the wiki-graph, Proc. 2006 IEEE/WIC/ACM Int. Conf. on Web Intell., 2006, pp. 45–51.Google Scholar
  28. 28.
    Ito, M., Nakayama, K., Hara, T., and Nishio, S., Semantic relatedness measurement based on Wikipedia link cooccurrence analysis, Int. J. Web Inform. Syst., 2011, vol. 7, pp. 44–61.CrossRefGoogle Scholar
  29. 29.
    Manning, C.D., Raghavan, P., and Schutze, H., An introduction to information retrieval, Cambridge University, 2009p. http://www-nlp.stanford.edu/IR-book/
  30. 30.
    Grabmeier, J. and Rudolph, A., Techniques of cluster algorithms in data mining, Data Mining Knowledge Discov., 2002, vol. 6, pp. 303–360.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Jain, A., Murty, M., and Flynn, P., Data clustering: A review, ACM Compt. Surveys, 1999, vol. 31, pp. 264–323.CrossRefGoogle Scholar
  32. 32.
    Kennedy, J. and Eberhart, R., Particle swarm optimization, Proc. IEEE Int. Conf. on Neural Network, Perth, Australia, 1995, pp. 1942–1948.Google Scholar
  33. 33.
    Ratnaweera, A., Halgamuge, S.K., and Watson, H.C., Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evolut. Compt., 2004, vol. 8, pp. 240–255.CrossRefGoogle Scholar
  34. 34.
    Bergh, F., An analysis of particle swarm optimizers, PhD Thesis. Department of Computer Science, University of Pretoria, 2002.Google Scholar
  35. 35.
    Clerc, M. and Kennedy, J., The particle swarm-explosion stability, and convergence in a multi-dimensional complex space, IEEE Trans. Evolut. Compt., 2002, vol. 6, pp. 58–73.CrossRefGoogle Scholar
  36. 36.
    Martens, D., Baesens, B., and Fawcett, T., Editorial survey: swarm intelligence for data mining, Machine Learning, 2011, vol. 82, no. 1, pp. 1–42.CrossRefMathSciNetGoogle Scholar
  37. 37.
    Kitayama, S., Arakawa, M., and Yamazaki, K., Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization, Struct. Multidiscipl. Optim., 2006, vol. 32, pp. 191–202.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • R. M. Alguliev
    • 1
  • R. M. Aliguliyev
    • 1
  • I. Ya. Alekperova
    • 1
  1. 1.Institute of Information TechnologyNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations