Skip to main content
Log in

Rheological Behavior of Polysaccharide Hydrogels of Alginate Reinforced by a Small Amount of Halloysite Nanotubes for Extrusion 3D Printing

  • SHORT COMMUNICATION
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The rheological properties of hydrogels of a natural polysaccharide sodium alginate and small amount of clay nanotubes of halloysite were investigated. Changes of rheological properties during the transition from a semidiluted polymer solution to a hydrogel upon cross-linking by calcium ions were shown. In the gel state, the samples have a yield stress, and their viscosity decreases with the shear rate, but the properties are quickly recovered after the load removal. It was discovered that the addition of up to 0.3 vol % nanotubes of natural clay halloysite leads to an increase by several times of a storage modulus and a yield stress of the hydrogels. At the same time, the practically important properties of shear thinning and the rapid recovery of properties after the load removing make the nanocomposite hydrogels of alginate and halloysite nanotubes promising for use as ink for extrusion 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Liu, J., Sun, L., Xu, W., Wang, Q., Yu, S., and Sun, J., Current advances and future perspectives of 3D printing natural-derived biopolymers, Carbohydr. Polym., 2019, vol. 207, pp. 297–316. https://doi.org/10.1016/j.carbpol.2018.11.077

    Article  CAS  PubMed  Google Scholar 

  2. Mobaraki, M., Ghaffari, M., Yazdanpanah, A., Luo, Ya., and Mills, D.K., Bioinks and bioprinting: A focused review, Bioprinting, 2020, vol. 18, p. e00080. https://doi.org/10.1016/j.bprint.2020.e00080

    Article  Google Scholar 

  3. Valentine, A.D., Busbee, T.A., Boley, J.W., Raney, J.R., Chortos, A., Kotikian, A., Berrigan, J.D., Durstock, M.F., and Lewis, J.A., Hybrid 3D printing of soft electronics, Adv. Mater., 2017, vol. 29, no. 40, p. 1703817. https://doi.org/10.1002/adma.201703817

    Article  CAS  Google Scholar 

  4. Arzhakova, O.V., Arzhakov, M.S., Badamshina, E.R., Bryuzgina, E.B., Bryuzgin, E.V., Bystrova, A.V., Vaganov, G.V., Vasilevskaya, V.V., Vdovichenko, A.Yu., Gallyamov, M.O., Gumerov, R.A., Didenko, A.L., Zefirov, V.V., Karpov, S.V., Komarov, P.V., Kulichi-khin, V.G., Kurochkin, S.A., Larin, S.V., Malkin, A.Ya., Milenin, S.A., Muzafarov, A.M., Molchanov, V.S., Navrotskiy, A.V., Novakov, I.A., Panarin, E.F., Panova, I.G., Potemkin, I.I., Svetlichny, V.M., Sedush, N.G., Serenko, O.A., Uspenskii, S.A., Philippova, O.E., Khokhlov, A.R., Chvalun, S.N., Sheiko, S.S., Shibaev, A.V., Elmanovich, I.V., Yudin, V.E., Yakimansky, A.V., and Yaroslavov, A.A., Polymers for the future, Russ. Chem. Rev., 2022, vol. 91, no. 12, p. RCR5062. https://doi.org/10.57634/rcr5062

    Article  Google Scholar 

  5. Li, H., Tan, C., and Li, L., Review of 3D printable hydrogels and constructs, Mater. Des., 2018, vol. 159, pp. 20–38. https://doi.org/10.1016/j.matdes.2018.08.023

    Article  CAS  Google Scholar 

  6. Truby, R.L. and Lewis, J.A., Printing soft matter in three dimensions, Nature, 2016, vol. 540, no. 7633, pp. 371–378. https://doi.org/10.1038/nature21003

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Heinrich, M.A., Liu, W., Jimenez, A., Yang, J., Akpek, A., Liu, X., Pi, Q., Mu, X., Hu, N., Schiffelers, R.M., Prakash, J., Xie, J., and Zhang, Yu.S., 3D bioprinting: From benches to translational applications, Small, 2019, vol. 15, no. 23, p. 1805510. https://doi.org/10.1002/smll.201970126

    Article  Google Scholar 

  8. Stanton, M.M., Samitier, J., and Sánchez, S., Bioprinting of 3D hydrogels, Lab a Chip, 2015, vol. 15, no. 15, pp. 3111–3115. https://doi.org/10.1039/c5lc90069g

    Article  CAS  Google Scholar 

  9. Rastogi, P. and Kandasubramanian, B., Review of alginate-based hydrogel bioprinting for application in tissue engineering, Biofabrication, 2019, vol. 11, no. 4, p. 042001. https://doi.org/10.1088/1758-5090/ab331e

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Diañez, I., Gallegos, C., Brito-De La Fuente, E., Martínez, I., Valencia, C., Sánchez, M.C., Diaz, M.J., and Franco, J.M., 3D printing in situ gelification of κ‑carrageenan solutions: Effect of printing variables on the rheological response, Food Hydrocolloids, 2019, vol. 87, pp. 321–330. https://doi.org/10.1016/j.foodhyd.2018.08.010

    Article  CAS  Google Scholar 

  11. Hu, C., Du, Z., Tai, X., Mao, X., and Liu, X., The property study of sodium dodecyl benzenesulfonate and polyvinylpyrrolidone complexes, Colloid Polym. Sci., 2018, vol. 296, no. 2, pp. 335–340. https://doi.org/10.1007/s00396-017-4248-9

    Article  CAS  Google Scholar 

  12. Axpe, E. and Oyen, M., Applications of alginate-based bioinks in 3D bioprinting, Int. J. Mol. Sci., 2016, vol. 17, no. 12, p. 1976. https://doi.org/10.3390/ijms17121976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murphy, S.V. and Atala, A., 3D bioprinting of tissues and organs, Nat. Biotechnol., 2014, vol. 32, no. 8, pp. 773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  14. Dávila, J.L. and D’ávila, M.A., Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing, Int. J. Adv. Manuf. Technol., 2019, vol. 101, nos. 1–4, pp. 675–686. https://doi.org/10.1007/s00170-018-2876-y

    Article  Google Scholar 

  15. Peak, C.W., Stein, J., Gold, K.A., and Gaharwar, A.K., Nanoengineered colloidal inks for 3D bioprinting, Langmuir, 2018, vol. 34, no. 3, pp. 917–925. https://doi.org/10.1021/acs.langmuir.7b02540

    Article  CAS  PubMed  Google Scholar 

  16. Liu, L., Wan, Ya., Xie, Yi., Zhai, R., Zhang, B., and Liu, J., The removal of dye from aqueous solution using alginate-halloysite nanotube beads, Chem. Eng. J., 2012, vol. 187, pp. 210–216. https://doi.org/10.1016/j.cej.2012.01.136

    Article  CAS  Google Scholar 

  17. Del Buffa, S., Rinaldi, E., Carretti, E., Ridi, F., Bonini, M., and Baglioni, P., Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel, Colloids Surf. B: Biointerfaces, 2016, vol. 145, pp. 562–566. https://doi.org/10.1016/j.colsurfb.2016.05.056

    Article  CAS  PubMed  Google Scholar 

  18. Li, H., Liu, S., and Lin, L., Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide, Int. J. Bioprinting, 2016, vol. 2, no. 2, pp. 58–66. https://doi.org/10.18063/ijb.2016.02.007

    Article  CAS  Google Scholar 

  19. Glukhova, S., Molchanov, V., Lokshin, B., Rogachev, A., Tsarenko, A., Patsaev, T., Kamyshinsky, R., and Philippova, O., Printable alginate hydrogels with embedded network of halloysite nanotubes: Effect of polymer cross-linking on rheological properties and microstructure, Polymers, 2021, vol. 13, no. 23, p. 4130. https://doi.org/10.3390/polym13234130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glukhova, S.A., Molchanov, V.S., Chesnokov, Yu.M., Lokshin, B.V., Kharitonova, E.P., and Philippova, O.E., Green nanocomposite gels based on binary network of sodium alginate and percolating halloysite clay nanotubes for 3D printing, Carbohydr. Polym., 2022, vol. 282, p. 119106. https://doi.org/10.1016/j.carbpol.2022.119106

    Article  CAS  PubMed  Google Scholar 

  21. Stokke, B.T., Draget, K.I., Smidsrød, O., Yuguchi, Yo., Urakawa, H., and Kajiwara, K., Small-angle X-ray scattering and rheological characterization of alginate gels. 1. Ca−alginate gels, Macromolecules, 2000, vol. 33, no. 5, pp. 1853–1863. https://doi.org/10.1021/ma991559q

    Article  ADS  CAS  Google Scholar 

  22. Lvov Y., Abdullayev E. Functional polymer-clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013; 38: 1690–1719. https://doi.org/10.1016/j.progpolymsci. 2013.05.009

  23. Cavallaro, G., Chiappisi, L., Pasbakhsh, P., Gradzielski, M., and Lazzara, G., A structural comparison of halloysite nanotubes of different origin by small-angle neutron scattering (SANS) and electric birefringence, Appl. Clay Sci., 2018, vol. 160, pp. 71–80. https://doi.org/10.1016/j.clay.2017.12.044

    Article  CAS  Google Scholar 

  24. Hernández, R., Sacristán, J., and Mijangos, C., Sol/Gel transition of aqueous alginate solutions induced by Fe2+ cations, Macromol. Chem. Phys., 2010, vol. 211, no. 11, pp. 1254–1260. https://doi.org/10.1002/macp.200900691

    Article  CAS  Google Scholar 

  25. Li, H., Liu, S., and Lin, L., Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide, Int. J. Bioprinting, 2016, vol. 2, no. 2, pp. 54–66. https://doi.org/10.18063/ijb.2016.02.007

    Article  CAS  Google Scholar 

  26. Hashemnejad, S.M. and Kundu, S., Rheological properties and failure of alginate hydrogels with ionic and covalent crosslinks, Soft Matter, 2019, vol. 15, no. 39, pp. 7852–7862. https://doi.org/10.1039/c9sm01039d

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Molchanov, V.S., Efremova, M.A., Kiseleva, T.Yu., and Philippova, O.E., Injectable ultra-soft hydrogel with natural nanoclay, Nanosystems: Phys., Chem., Math., 2019, vol. 10, no. 1, pp. 76–85. https://doi.org/10.17586/2220-8054-2019-10-1-76-85

    Article  CAS  Google Scholar 

  28. Shishkhanova, K.B., Molchanov, V.S., Baranov, A.N., Kharitonova, E.P., Orekhov, A.S., Arkharova, N.A., and Philippova, O.E., A pH-triggered reinforcement of transient network of wormlike micelles by halloysite nanotubes of different charge, J. Mol. Liq., 2023, vol. 370, p. 121032. https://doi.org/10.1016/j.molliq.2022.121032

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Russian Science Foundation (project no. 23-13-00177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Molchanov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchanov, V.S., Glukhova, S.A. & Philippova, O.E. Rheological Behavior of Polysaccharide Hydrogels of Alginate Reinforced by a Small Amount of Halloysite Nanotubes for Extrusion 3D Printing. Moscow Univ. Biol.Sci. Bull. 78 (Suppl 1), S72–S77 (2023). https://doi.org/10.3103/S0096392523700268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392523700268

Keywords:

Navigation