Skip to main content
Log in

Stabilization of Full-Length S-Protein of SARS-Cov-2 Coronavirus in SMA Polymer for Electron Microscopy Study

  • SHORT COMMUNICATION
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

A detergent-free protocol for purification of the coronavirus prefusion S-protein using styrene-maleic acid copolymer (SMA) was developed. Expression of the S-protein was carried out in HEK293T cells. Two solubilization methods were used to purify and prepare the S-protein for microscopy: in NP-40 detergent and as part of SMA. The resulting preparations were examined in an electron microscope, and the particles of purified S-proteins were classified. Analysis of two-dimensional projections of the particles showed that the use of lipodiscs for solubilization leads to lower mobility of the purified protein on the substrate compared to the protein in the detergent, which may further contribute to obtaining higher resolutions when studying the structure of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kudriavtsev, A.V., Vakhrusheva, A.V., Novoseletsky, V.N., Bozdaganyan, M.E., Shaitan, K.V., Kirpichnikov, M.P., and Sokolova, O.S., Immune escape associated with RBD omicron mutations and SARS-CoV-2 evolution dynamics, Viruses, 2022, vol. 14, no. 8, p. 1603. https://doi.org/10.3390/v14081603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bozdaganyan, M.E., Shaitan, K.V., Kirpichnikov, M.P., Sokolova, O.S., and Orekhov, P.S., Computational analysis of mutations in the receptor-binding domain of SARS-CoV-2 spike and their effects on antibody binding, Viruses, 2022, vol. 14, no. 2, p. 295. https://doi.org/10.3390/v14020295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, F., Structure, function, and evolution of coronavirus spike proteins, Annu. Rev. Virol., 2016, vol. 3, no. 1, pp. 237–261. https://doi.org/10.1146/annurev-virology-110615-042301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shang, J., Ye, G., Shi, K., Wan, Yu., Luo, C., Aihara, H., Geng, Q., Auerbach, A., and Li, F., Structural basis of receptor recognition by SARS-CoV-2, Nature, 2020, vol. 581, no. 7807, pp. 221–224. https://doi.org/10.1038/s41586-020-2179-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palsdottir, H. and Hunte, C., Lipids in membrane protein structures, Biochim. Biophys. Acta, Biomembr., 2004, vol. 1666, nos. 1–2, pp. 2–18. https://doi.org/10.1016/j.bbamem.2004.06.012

    Article  CAS  Google Scholar 

  6. Dörr, J.M., Scheidelaar, S., Koorengevel, M.C., Dominguez, J.J., Schäfer, M., Van Walree, C.A., and Killian, J.A., The styrene–maleic acid copolymer: A versatile tool in membrane research, Eur. Biophys. J., 2016, vol. 45, no. 1, pp. 3–21. https://doi.org/10.1007/s00249-015-1093-y

    Article  CAS  PubMed  Google Scholar 

  7. Turoňová, B., Sikora, M., Schürmann, C., Ha-gen, W.J.H., Welsch, S., Blanc, F.E.C., Von Bülow, S., Gecht, M., Bagola, K., Hörner, C., Van Zandbergen, G., Landry, J., De Azevedo, N.T.D., Mosalaganti, S., Schwarz, A., Covino, R., Mühlebach, M.D., Hummer, G., Krijnse Locker, J., and Beck, M., In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges, Science, 2020, vol. 370, no. 6513, pp. 203–208. https://doi.org/10.1126/science.abd5223

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garavito, R.M. and Ferguson-Miller, S., Detergents as tools in membrane biochemistry, J. Biol. Chem., 2001, vol. 276, no. 35, pp. 32403–32406. https://doi.org/10.1074/jbc.r100031200

    Article  CAS  PubMed  Google Scholar 

  9. Lichtenberg, D., Ahyayauch, H., and Goñi, F.M., The mechanism of detergent solubilization of lipid bilayers, Biophys. J., 2013, vol. 105, no. 2, pp. 289–299. https://doi.org/10.1016/j.bpj.2013.06.007

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popot, J.-L., Althoff, T., Bagnard, D., Banères, J.-L., Bazzacco, P., Billon-Denis, E., Catoire, L.J., Champeil, P., Charvolin, D., Cocco, M.J., Crémel, G., Dahmane, T., De La Maza, L.M., Ebel, C., Gabel, F., Giusti, F., Gohon, Y., Goormaghtigh, E., Guittet, E., Kleinschmidt, J.H., Kühlbrandt, W., Le Bon, C., Martinez, K.L., Picard, M., Pucci, B., Sachs, J.N., Tribet, C., Van Heijenoort, C., Wien, F., Zito, F., and Zoonens, M., Amphipols from A to Z, Annu. Rev. Biophys., 2011, vol. 40, no. 1, pp. 379–408. https://doi.org/10.1146/annurev-biophys-042910-155219

    Article  CAS  PubMed  Google Scholar 

  11. Rigaud, J.-L. and Lévy, D., Reconstitution of membrane proteins into liposomes, Methods in Enzymology, Elsevier, 2003, vol. 372, pp. 65–86. https://doi.org/10.1016/s0076-6879(03)72004-7

    Article  CAS  Google Scholar 

  12. Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., and Sligar, S.G., Reconstitution of membrane proteins in phospholipid bilayer nanodiscs, Liposomes, Part F, Düzgünes, N. and Dugoni, A.A., Eds., Methods in Enzymology, vol. 464, Elsevier, 2009, pp. 211–231. https://doi.org/10.1016/s0076-6879(09)64011-8

  13. Knowles, T.J., Finka, R., Smith, C., Lin, Yu-P., Dafforn, T., and Overduin, M., Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer, J. Am. Chem. Soc., 2009, vol. 131, no. 22, pp. 7484–7485. https://doi.org/10.1021/ja810046q

    Article  CAS  PubMed  Google Scholar 

  14. Karlova, M.G., Voskoboynikova, N., Gluhov, G.S., Abramochkin, D., Malak, O.A., Mulkidzhanyan, A., Loussouarn, G., Steinhoff, H.-J., Shaitan, K.V., and Sokolova, O.S., Detergent-free solubilization of human Kv channels expressed in mammalian cells, Chem. Phys. Lipids, 2019, vol. 219, pp. 50–57. https://doi.org/10.1016/j.chemphyslip.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  15. Punjani, A., Rubinstein, J.L., Fleet, D.J., and Bruba-ker, M.A., cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination, Nat. Methods, 2017, vol. 14, no. 3, pp. 290–296. https://doi.org/10.1038/nmeth.4169

    Article  CAS  PubMed  Google Scholar 

  16. Zhong, F., Zhong, Z.Y., Liang, S., and Li, X.J., High expression level of soluble SARS spike protein mediated by adenovirus in HEK293 cells, World J. Gastroenterol., 2006, vol. 12, no. 9, p. 1452. https://doi.org/10.3748/wjg.v12.i9.1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai, Yo., Zhang, J., Xiao, T., Peng, H., Sterling, S.M., Walsh, R.M., Rawson, S., Rits-Volloch, S., and Chen, B., Distinct conformational states of SARS-CoV-2 spike protein, Science, 2020, vol. 369, no. 6511, pp. 1586–1592. https://doi.org/10.1126/science.abd4251

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, Ch.-L., Abiona, O., Graham, B.S., and McLellan, J.S., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, 2020, vol. 367, no. 6483, pp. 1260–1263. https://doi.org/10.1126/science.abb2507

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, Ye.K., Cao, Yi., Frank, M., Woo, H., Park, S.-J., Yeom, M.S., Croll, T.I., Seok, C., and Im, W., Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane, J. Chem. Theory Comput., 2021, vol. 17, no. 4, pp. 2479–2487. https://doi.org/10.1021/acs.jctc.0c01144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pramanick, I., Sengupta, N., Mishra, S., Pandey, S., Girish, N., Das, A., and Dutta, S., Conformational flexibility and structural variability of SARS-CoV2 S protein, Structure, 2021, vol. 29, no. 8, pp. 834.e5–845.e5. https://doi.org/10.1016/j.str.2021.04.006

    Article  CAS  Google Scholar 

  21. Yao, H., Song, Yu., Chen, Yo., Wu, N., Xu, J., Sun, C., Zhang, J., Weng, T., Zhang, Z., Wu, Z., Cheng, L., Shi, D., Lu, X., Lei, J., Crispin, M., Shi, Yi., Li, L., and Li, S., Molecular architecture of the SARS-CoV-2 virus, Cell, 2020, vol. 183, no. 3, pp. 730.e13–738.e13. https://doi.org/10.1016/j.cell.2020.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, Yu., Yao, H., Wu, N., Xu, J., Zhang, Z., Peng, C., Li, S., Kong, W., Chen, Yo., Zhu, M., Wang, J., Shi, D., Zhao, C., Lu, X., Echavarría galindo, M., and Li, S., In situ architecture and membrane fusion of SARS-CoV-2 Delta variant, Proc. Natl. Acad. Sci. U. S. A., 2023, vol. 120, no. 18, p. e2213332120. https://doi.org/10.1073/pnas.2213332120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.V. Moiseenko for assistance in conducting electron microscopic studies.

Funding

The study was carried out with the financial support of the Moscow State University Development Program (project no. 23A-Sh04-01) using the Three-Dimensional Electron Microscopy and Spectroscopy unique set-up of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Glukhov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamaeva, N.Y., Derkacheva, N.I., Gasanova, D.A. et al. Stabilization of Full-Length S-Protein of SARS-Cov-2 Coronavirus in SMA Polymer for Electron Microscopy Study. Moscow Univ. Biol.Sci. Bull. 78 (Suppl 1), S22–S27 (2023). https://doi.org/10.3103/S0096392523700165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392523700165

Keywords:

Navigation