Skip to main content
Log in

Spatial Attention Effects on P300 BCI Performance: ERP and Eye-Tracking Study

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

P300 brain–computer interface (BCI), based on P300 (or P3) event-related potential component, is one of the first BCIs and has various applications, one of which is text typing. This study was conducted to examine visual spatial attention, eye gaze, and event-related potential in a P300 BCI speller. 24 healthy volunteers (7 males) participated in the study, and their electroencephalogram and eye movements were recorded in three different experimental conditions: overt attention, covert attention, and gaze fixation. Results showed that performance was significantly lower in the covert attention condition (5% median accuracy compared to 90% with overt attention). Gaze fixation without allocation of attention yielded an 80% accuracy, despite higher gaze dispersion and lower average gaze duration for fixation characters. Event-related potentials analysis revealed that covert attention led to smaller N1 and P2 components, as well as a later and smaller P3 component. Our findings emphasize the importance of gaze fixation for the performance of classic P300 BCI spellers and suggest gaze shifts as the main source of spelling errors. This information can also be used to design high-performance covert attention BCIs that focus on the P3 in the absence of early exogenous components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Farwell, L.A. and Donchin, E., Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr. Clin. Neurophysiol., 1988, vol. 70, no. 6, pp. 510–523. https://doi.org/10.1016/0013-4694(88)90149-6

    Article  CAS  PubMed  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., and Vaughan, T.M., Brain-computer interfaces for communication and control, Clin. Neurophysiol., 2002, vol. 113, no. 6, pp. 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  PubMed  Google Scholar 

  3. Allison, B.Z., Kübler, A., and Jin, J., 30+ years of P300 brain–computer interfaces, Psychophysiology, 2020, vol. 57, no. 7, p. e13569. https://doi.org/10.1111/psyp.13569

    Article  PubMed  Google Scholar 

  4. Treder, M.S. and Blankertz, B., (C)overt attention and visual speller design in an ERP-based brain-computer interface, Behav. Brain Funct., 2010, vol. 6, p. 28. https://doi.org/10.1186/1744-9081-6-28

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pires, G., Nunes, U., and Castelo-Branco, M., GIBS block speller: toward a gaze-independent P300-based BCI, Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 6360–6364. https://doi.org/10.1109/IEMBS.2011.6091570

  6. Aloise, F., Aricò, P., Schettini, F., Riccio, A., Salinari, S., Mattia, D., Babiloni, F., and Cincotti, F., A covert attention P300-based brain–computer interface: Geospell, Ergonomics, 2012, vol. 55, no. 5, pp. 538–551. https://doi.org/10.1080/00140139.2012.661084

    Article  PubMed  Google Scholar 

  7. Chen, L., Jin, J., Daly I., Zhang, Y., Wang, X., and Cichocki, A., Exploring combinations of different color and facial expression stimuli for gaze-independent BCIs, Front. Comput. Neurosci., 2016, vol. 10, p. 5. https://doi.org/10.3389/fncom.2016.00005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xu, W., Gao, P., He, F., and Qi, H., Improving the performance of a gaze independent P300-BCI by using the expectancy wave, J. Neural Eng., 2022, vol. 19, p. 026036. https://doi.org/10.1088/1741-2552/ac60c8

    Article  Google Scholar 

  9. Bauer, G., Gerstenbrand, F., and Rumpl, E., Varieties of the locked-in syndrome, J. Neurol., 1979, vol. 221, no. 2, pp. 77–91. https://doi.org/10.1007/BF00313105

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhary, U., Birbaumer, N., and Ramos-Murguialday, A., Brain-computer interfaces in the completely locked-in state and chronic stroke, Prog. Brain Res., 2016, vol. 228, pp. 131–161. https://doi.org/10.1016/bs.pbr.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  11. Chaudhary, U., Mrachacz-Kersting, N., and Birbau-mer, N., Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis, J. Physiol., 2021, vol. 599, no. 9, pp. 2351–2359. https://doi.org/10.1113/JP278775

    Article  CAS  PubMed  Google Scholar 

  12. Riccio, A., Mattia, D., Simione, L., Olivetti, M., and Cincotti, F., Eye-gaze independent EEG-based brain–computer interfaces for communication, J. Neural Eng., 2012, vol. 9, no. 4, p. 045001. https://doi.org/10.1088/1741-2560/9/4/045001

    Article  CAS  PubMed  Google Scholar 

  13. Salvaris, M. and Sepulveda, F., Perceptual errors in the Farwell and Donchin matrix speller, Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering 2009, 2009, pp. 275–278. https://doi.org/10.1109/IEMBS.2008.4649364

    Article  Google Scholar 

  14. Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., and Schalk, G., Does the “P300” speller depend on eye gaze?, J. Neural Eng., 2010, vol. 7, no. 5, p. 056013. https://doi.org/10.1088/1741-2560/7/5/056013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I.P., Quitadamo, L.R., and Seri, S., Which physiological components are more suitable for visual ERP based brain–computer interface? A preliminary MEG/EEG study, Brain Topogr., 2010, vol. 23, no. 2, pp. 180–185. https://doi.org/10.1007/s10548-010-0143-0

    Article  PubMed  Google Scholar 

  16. Frenzel, S., Neubert, E., and Bandt, C., Two communication lines in a 3 x 3 matrix speller, J. Neural Eng., 2011, vol. 8, no. 3, p. 036021. https://doi.org/10.1088/1741-2560/8/3/036021

    Article  CAS  PubMed  Google Scholar 

  17. Peirce, J.W., Generating stimuli for neuroscience using PsychoPy, 2009, Front. Neuroinf., vol. 2, p. 10. https://doi.org/10.3389/neuro.11.010.2008

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Du-chesnay, E., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.

    Google Scholar 

  19. Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., and Hämäläinen, M., MEG and EEG data analysis with MNE-Python, Front. Neurosci., 2013, vol. 7, p. 267. https://doi.org/10.3389/fnins.2013.00267

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dalmaijer, E.S., Mathôt, S., and Van der Stigchel, S., PyGa+ze: An open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments, Behav. Res. Methods, 2014, vol. 46, no. 4, pp. 913–921. https://doi.org/10.3758/s13428-013-0422-2

    Article  PubMed  Google Scholar 

  21. Fazel-Rezai, R., Human error in P300 speller paradigm for brain-computer interface, Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007, pp. 2516–2519. https://doi.org/10.1109/IEMBS.2007.4352840

  22. Anstis, S.M., Letter: A chart demonstrating variation in acuity with retinal position, Vision Res., 1973, vol. 14, no. 7, pp. 589–592. https://doi.org/10.1016/0042-6989(74)90049-2

    Article  Google Scholar 

  23. Engbert, R. and Kliegl, R., Microsaccades uncover the  orientation of covert attention, Vision Res., 2003, vol. 43, no. 9, pp. 1035–1045. https://doi.org/10.1016/S0042-6989(03)00084-1

    Article  PubMed  Google Scholar 

  24. Yuval-Greenberg, S., Merriam, E.P., and Heeger, D.J., Spontaneous microsaccades reflect shifts in covert attention, J. Neurosci., 2014, vol. 34, no. 41, pp. 13693–13700. https://doi.org/10.1523/JNEUROSCI.0582-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, G., Herman, J.P., Katz, L.N., and Krauzlis, R.J., Microsaccades as a marker not a cause for attention-related modulation, eLife, 2022, vol. 11, p. e74168. https://doi.org/10.7554/eLife.74168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shishkin, S.L., Ganin, I.P., Basyul, I.A., Zhigalov, A.Y., and Kaplan A.Ya., N1 wave in the P300 BCI is not sensitive to the physical characteristics of stimuli, J. Integr. Neurosci., 2009, vol. 8, no. 4, pp. 471–485. https://doi.org/10.1142/s0219635209002320

    Article  PubMed  Google Scholar 

  27. Hopf, J.-M., Vogel, E., Geoffrey, W., Heinze, H.-J., and Luck, S.J., Localizing visual discrimination processes in time and space, J. Neurophysiol., 2002, vol. 88, no. 4, pp. 2088–2095. https://doi.org/10.1152/jn.2002.88.4.2088

    Article  PubMed  Google Scholar 

  28. Di Russo, F., Stella, A., Spitoni, G., Strappini, F., Sdoia, S., Galati, G., Hillyard, S.A., Spinelli, D., and Pitzalis, S., Spatiotemporal brain mapping of spatial attention effects on pattern-reversal ERPs, Hum. Brain Mapp., 2012, vol. 33, no. 6, pp. 1334–1351. https://doi.org/10.1002/hbm.21285

    Article  PubMed  Google Scholar 

  29. Hirata, K. and Lehmann, D., N1 and P2 of frequent and rare event-related potentials show effects and after-effects of the attended target in the oddball-paradigm, Int. J. Psychophysiol., 1990, vol. 9, no. 3, pp. 293–301. https://doi.org/10.1016/0167-8760(90)90061-h

    Article  CAS  PubMed  Google Scholar 

  30. Maeno, T., Gjini, K., Iramina, K., Eto, F., and Ueno, S., Event-related potential P2 derived from visual attention to the hemi-space. Source localization with LORETA, Int. Congr. Ser., 2004, vol.1270, pp. 262–265. https://doi.org/10.1016/j.ics.2004.04.034

    Article  Google Scholar 

  31. Linden, D.E.J., The p300: where in the brain is it produced and what does it tell us?, Neuroscientist, 2005, vol. 11, no. 6, pp. 563–576. https://doi.org/10.1177/1073858405280524

    Article  CAS  PubMed  Google Scholar 

  32. Verleger, R., Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b, Psychophysiology, 2020, vol. 57, no. 7, p. e13542. https://doi.org/10.1111/psyp.13542

    Article  PubMed  Google Scholar 

  33. Pitts, M.A., Padwal, J., Fennelly, D., Martínez, A., and Hillyard, S.A., Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness, Neuroimage, 2014, vol. 101, pp. 337–350. https://doi.org/10.1016/j.neuroimage.2014.07.024

    Article  PubMed  Google Scholar 

  34. Ye, M., Lyu, Y., Sclodnick, B., and Sun, H.-J., The P3 Reflects awareness and can be modulated by confidence, Front. Neurosci., 2019, vol. 13, p. 510. https://doi.org/10.3389/fnins.2019.00510

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fonken, Y.M., Kam, J.W.Y., and Knight, R.T., A differential role for human hippocampus in novelty and contextual processing: Implications for P300, Psychophysiology, 2020, vol. 57, no. 7, p. e13400. https://doi.org/10.1111/psyp.13400

    Article  PubMed  Google Scholar 

  36. Zhang, Q., Luo, C., Ngetich, R., Zhang, J., Jin, Z., and Li, L., Visual selective attention P300 source in frontal-parietal lobe: ERP and fMRI study, Brain Topogr., 2022, vol. 35, pp. 636–650. https://doi.org/10.1007/s10548-022-00916-x

    Article  PubMed  Google Scholar 

  37. Squires, N.K., Squires, K.C., and Hillyard, S.A., Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man, Electroencephalogr. Clin. Neurophysiol., 1975, vol. 38, no. 4, pp. 387–401. https://doi.org/10.1016/0013-4694(75)90263-1

    Article  CAS  PubMed  Google Scholar 

  38. Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., and Linden, D.E.J., Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study, J. Neurosci., 2004, vol. 24, no. 42, pp. 9353–9360. https://doi.org/10.1523/JNEUROSCI.1897-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bocquillon, P., Bourriez, J.L., Palmero-Soler, E., Betrouni, N., Houdayer, E., Derambure, P., and Dujardin, K., Use of swLORETA to localize the cortical sources of target- and distracter-elicited P300 components, Clin. Neurophysiol., 2011, vol. 122, no. 10, pp. 1991–2002. https://doi.org/10.1016/j.clinph.2011.03.014

    Article  PubMed  Google Scholar 

  40. Carretié, L., Albert, J., López-Martín, S., Hoyos, S., Kessel, D., Tapia, M., and Capilla, A., Differential neural mechanisms underlying exogenous attention to peripheral and central distracters, Neuropsychologia, 2013, vol. 51, no. 10, pp. 1838–1847. https://doi.org/10.1016/j.neuropsychologia.2013.06.021

    Article  PubMed  Google Scholar 

  41. Polich, J., Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 2007, vol. 118, no. 10, pp. 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Assistance to Small Innovative Enterprises (FASIE) grant 14435GU/2019 to A. Pronina.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Pronina, R. Grigoryan, A. Kaplan; Methodology: A. Pronina, R. Grigoryan; Formal analysis and investigation: A. Pronina, A. Makarova; Original draft preparation: A. Pronina; Writing: review and editing: A. Pronina, R. Grigoryan, A. Kaplan; Funding acquisition: A. Kaplan; Resources: A. Kaplan; Supervision: A. Kaplan.

Corresponding author

Correspondence to A. Pronina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronina, A., Grigoryan, R., Makarova, A. et al. Spatial Attention Effects on P300 BCI Performance: ERP and Eye-Tracking Study. Moscow Univ. Biol.Sci. Bull. 78, 255–262 (2023). https://doi.org/10.3103/S009639252360028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009639252360028X

Keywords:

Navigation