Skip to main content
Log in

Effect of 4-(Trifluoromethoxy)phenylhydrazone Carbonyl Cyanide (FCCP) on FcεRI-Dependent Cytokine Production by RBL-2H3 Cells

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Mast cells (MCs) play a key role in the development of allergic diseases. The interaction of antigens with immunoglobulin E and the subsequent binding of these complexes to the FcεRI receptor, which ultimately leads to rapid exocytosis of granules and subsequent production of cytokines, play a major role in MC activation in an allergy. There are data on the role of the mitochondrial membrane potential in the FcεRI-dependent activation of MCs. Thus, the use of classical uncouplers of oxidative phosphorylation reduces the level of MC degranulation. However, their effect on the production of MC cytokines has not been studied. In this work, it was demonstrated that pretreatment of RBL-2H3 MC with the uncoupler carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) leads to a decrease not only in the level of FcεRI-dependent degranulation but also in the production of TNFα and IL-4 cytokines. At the same time, FCCP prevents the phosphorylation of the LAT adapter molecule, as well as the Erk1/2 kinase, which may underlie the inhibitory effect of the uncoupler on the FcεRI-dependent activation of RBL-2H3 cell line. The data obtained indicate that the mitochondrial membrane potential plays an important role in the FcεRI-dependent activation of MCs, and the uncoupling of oxidative phosphorylation and respiration of mitochondria with the help of uncouplers can be used to regulate this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Silva, E.Z.M., Jamur, M.C., and Oliver, C., Mast cell function: a new vision of an old cell, J. Histochem. Cytochem., 2014, vol. 62, no. 10, pp. 698–738.

    Article  PubMed  Google Scholar 

  2. Krystel-Whittemore, M., Dileepan, K.N., and Wood, J.G., Mast cell: A multi-functional master cell, Front. Immunol., 2015, vol. 6, p. 620.

    PubMed  Google Scholar 

  3. Wernersson, S. and Pejler, G., Mast cell secretory granules: armed for battle, Nat. Rev. Immunol., 2014, vol. 14, no.7, pp. 478–494.

    Article  CAS  PubMed  Google Scholar 

  4. Pejler, G., Hu Frisk, J.M., Sjöström, D., Paivandy, A., and Öhrvik, H., Acidic pH is essential for maintaining mast cell secretory granule homeostasis, Cell Death Dis., 2017, vol. 8, no. 5, p. e2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanagaratham, C., El Ansari, Y.S., Lewis, O.L., and Oettgen, H.C., IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy, Front. Immunol., 2020, vol. 11, p. 603050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohr, F.C. and Fewtrell, C., The relative contributions of extracellular and intracellular calcium to secretion from tumor mast cells. Multiple effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, J. Biol. Chem., 1987, vol. 262, no. 22, pp. 10638–10643.

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki, Y., Yoshimaru, T., Inoue, T., and Ra, C., Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation, J. Leukocyte Biol., 2006, vol. 79, no. 3, pp. 508–518.

    Article  CAS  PubMed  Google Scholar 

  8. Weatherly, L.M., Shim, J., Hashmi, H.N., Kennedy, R.H., Hess, S.T., and Gosse, J.A., Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes, J. Appl. Toxicol., 2016, vol. 36, no. 6, pp. 777–789.

    Article  CAS  PubMed  Google Scholar 

  9. Weatherly, L.M., Nelson, A.J., Shim, J., Riitano, A.M., Gerson, E.D., Hart, A.J., de Juan-Sanz, J., Ryan, T.A., Sher, R., Hess, S.T., and Gosse, J.A., Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation, Toxicol. Appl. Pharmacol., 2018, vol. 349, pp. 39–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Demine, S., Renard, P., and Arnould, T., Mitochondrial uncoupling: A key controller of biological processes in physiology and diseases, Cells, 2019, vol. 8, no. 8, p. 795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sagi-Eisenberg, R. and Pecht, I., Resolution of cellular compartments involved in membrane potential changes accompanying IgE-mediated degranulation of rat basophilic leukemia cells, EMBO J., 1984, vol. 3, no. 3, pp. 497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Inoue, T., Suzuki, Y., and Ra, C., Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction, Free Radical Biol. Med., 2010, vol. 49, no. 4, pp. 632–640.

    Article  CAS  Google Scholar 

  13. Rådinger, M., Jensen, B.M., Swindle, E., and Gilfillan, A.M., Assay of mast cell mediators, in Methods in Molecular Biology, Eds. Hughes, M. and McNagny, K., New York: Humana Press, 2015, vol. 1220, pp. 307–323.

    Google Scholar 

  14. Falcone, F.H., Wan, D., Barwary, N., and Sagi-Eisenberg, R., RBL cells as models for in vitro studies of mast cells and basophils, Immunol. Rev., 2018, vol. 282, no. 1, pp. 47–57.

    Article  CAS  PubMed  Google Scholar 

  15. Turner, H. and Kinet, J.P., Signalling through the  high-affinity IgE receptor FcεRI, Nature, 1999, vol. 402, no. 6760, pp. B24–B30.

    Article  CAS  PubMed  Google Scholar 

  16. Saitoh, S.I., Odom, S., Gomez, G., Sommers, C.L., Young, H.A., Rivera, J., and Samelson, L.E., The four distal tyrosines are required for LAT-dependent signaling in FcεRI-mediated mast cell activation, J. Exp. Med., 2003, vol. 198, no. 5, pp. 831–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fitzsimmons, C.M., Falcone, F.H., and Dunne, D.W., Helminth allergens, parasite-specific IgE, and its protective role in human immunity, Front. Immunol., 2014, vol. 5, p. 61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marquardt, D.L. and Walker, L.L., Dependence of mast cell IgE-mediated cytokine production on nuclear factor-κB activity, J. Allergy Clin. Immunol., 2000, vol. 105, no. 3, pp. 500–505.

    Article  CAS  PubMed  Google Scholar 

  19. Murakami, M. and Taketomi, Y., Secreted phospholipase A2 and mast cells, Allergol. Int., 2015, vol. 64, no. 1, pp. 4–10.

    Article  CAS  PubMed  Google Scholar 

  20. Gilfillan, A.M. and Rivera, J., The tyrosine kinase network regulating mast cell activation, Immunol. Rev., 2009, vol. 228, no. 1, pp. 149–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tagen, M., Elorza, A., Kempuraj, D., Boucher, W., Kepley, C.L., Shirihai, O.S., and Theoharides, T.C., Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content, J. Immunol., 2009, vol. 183, no. 10, pp. 6313–6319.

    Article  CAS  PubMed  Google Scholar 

  22. Li, J., Miller, E.J., Ninomiya-Tsuji, J., Russell, R.R., and Young, L.H., AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart, Circ. Res., 2005, vol. 97, no. 9, pp. 872–879.

    Article  CAS  PubMed  Google Scholar 

  23. Lanna, A., Henson, S.M., Escors, D., and Akbar, A.N., The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human  T cells, Nat. Immunol., 2014, vol. 15, no. 10, pp. 965–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demine, S., Renard, P., and Arnould, T., Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases, Cells, 2019, vol. 8, no. 8, p. 795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tong, S., Zhou, T., Meng, Y., Xu, D., and Chen, J., AMPK decreases ERK1/2 activity and cancer cell sensitivity to nutrition deprivation by mediating a positive feedback loop involving eEF2K, Oncol. Lett., 2020, vol. 20, no. 1, pp. 61–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meng, R., Pei, Z., Zhang, A., Zhou, Y., Cai, X., Chen, B., Liu, G., Mai, W., Wei, J., Dong, Y., AMPK activation enhances PPARα activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway, Arch. Biochem. Biophys., 2011, vol. 511, nos. 1–2, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hwang, S.L., Li, X., Lu, Y., Jin, Y., Jeong, Y.T., Kim, Y.D., Lee, I.K., Taketomi, Y., Sato, H., Cho, Y.S., Murakami, M., and Chang, H.W., AMP-activated protein kinase negatively regulates FcεRI-mediated mast cell signaling and anaphylaxis in mice, J. Allergy Clin. Immunol., 2013, vol. 132, no. 3, pp. 729–736.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, K.C., Huang, D.Y., Huang, D.W., Tzeng, S.J., and Lin, W.W., Inhibition of AMPK through Lyn-Syk-Akt enhances FcεRI signal pathways for allergic response, J. Mol. Med., 2016, vol. 94, no. 2, pp. 183–194.

    Article  CAS  PubMed  Google Scholar 

  29. Chelombitko, M.A., Fedorov, A.V., Ilyinskaya, O.P., Zinovkin, R.A., and Chernyak, B.V., Role of reactive oxygen species in mast cell degranulation, Biochemistry (Moscow), 2016, vol. 81, no. 12, pp. 1564–1577.

    CAS  PubMed  Google Scholar 

  30. Jang, J.Y., Min, J.H., Chae, Y.H., Baek, J.Y., Wang, S.B., Park, S.J., Oh, G.T., Lee, S.H., Ho, Y.S., and Chang, T.S., Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation, Antioxid. Redox Signal., 2014, vol. 20, no. 16, pp. 2528–2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, S.K., Starnes, T.W., Deng, Q., and Huttenlocher, A., Lyn is a redox sensor that mediates leukocyte wound attraction in vivo, Nature, 2011, vol. 480, no. 7375, pp. 109–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 22-74-00081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Chelombitko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

STATEMENT ON THE WELFARE OF ANIMALS

The study was conducted without the use of animals and without involving people as subjects.

Additional information

Translated by M. Shulskaya

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlyuchenkova, A.N., Smirnov, M.S. & Chelombitko, M.A. Effect of 4-(Trifluoromethoxy)phenylhydrazone Carbonyl Cyanide (FCCP) on FcεRI-Dependent Cytokine Production by RBL-2H3 Cells. Moscow Univ. Biol.Sci. Bull. 78, 66–73 (2023). https://doi.org/10.3103/S0096392523020086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392523020086

Keywords:

Navigation