Skip to main content
Log in

Winter Dormancy of Woody Plants and Its Noninvasive Monitoring

  • REVIEW
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract—

When dormant, perennial plants dwelling in the regions with pronounced seasonality of climate can withstand prolonged periods of harsh environmental conditions. The period of plant dormancy is commonly divided into pre-dormancy, endodormancy, and ecodormancy. During pre-dormancy, genetic, physiological, biochemical, and morphological rearrangements increasing stress resilience of the plant organism are completed. In the course of endodormancy, meristem cells cannot resume division even under favorable conditions. Environmental stimuli trigger dormancy release and the onset of ecodormancy when plant cell division and growth are restrained only by unfavorable environmental conditions. Frequent nowadays, weather fluctuations can lead to abnormal progression of dormancy. It results in the increased risk of damage to plants, especially crop plants, by adverse climatic conditions. This situation calls for the development of methods for noninvasive express monitoring of plant dormancy. Studies of the relationships between the dormancy status of plants and the functioning of their photosynthetic apparatus made possible the development of methods for monitoring of woody plant condition by recording the variable fluorescence of chlorophyll contained either in needles or in the endoderm of the shoots. This review briefly summarizes current knowledge about the mechanism of the dormancy induction and release. The functioning and regulation of the photosynthetic apparatus during winter dormancy as well as characteristic patterns of chlorophyll fluorescence induction in this period are considered. The difficulties of interpretation of chlorophyll fluorescence signals in the context of monitoring of plant dormancy are discussed together with its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Withers, P. and Cooper, C., in Encyclopedia of Ecology, Fath, B.D., Ed., Elsevier, 2018, pp. 309–314, vol. 3.

    Google Scholar 

  2. Genkel’, P.A. and Oknina, E.Z., On the physiology of the rest state and methods for its diagnosis in Fiziologiya sostoyaniya pokoya u rastenii (Physiology of Dormancy in Plants), Prokof’ev, A., Ed., Moscow: Nauka, 1968, pp. 29–54.

  3. Nesterov, Ya.S., Period pokoya plodovykh kul’tur (Dormant Period of Fruit Crops), Moscow: Sel’khozizdat, 1962.

  4. Campoy, J.A., Ruiz, D., and Egea, J., Dormancy in temperate fruit trees in a global warming context: a review, Sci. Hort., 2011, vol. 130, no. 2, pp. 357–372.

    Article  Google Scholar 

  5. Luedeling, E., Climate change impacts on winter chill for temperate fruit and nut production: A review, Sci. Hort., 2012, vol. 144, no. 6, pp. 218–229.

    Article  Google Scholar 

  6. Tumanov, I.I., Fiziologiya zakalivaniya i morozostoikosti rastenii (Physiology of Hardening and frost Resistance of Plants), Moscow: Nauka, 1979.

  7. Considine, M.J. and Considine, J.A., On the language and physiology of dormancy and quiescence in plants, J. Exp. Bot., 2016, vol. 67, no. 11, pp. 3189–3203.

    Article  CAS  PubMed  Google Scholar 

  8. Rohde, A. and Bhalerao, R.P., Plant dormancy in the perennial context, Trends Plant. Sci., 2007, vol. 12, no. 5, pp. 217–223.

    Article  CAS  PubMed  Google Scholar 

  9. Bewley, J.D., Seed germination and dormancy, Plant Cell, 1997, vol. 9, no. 7, pp. 1055–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Llona, I., Ramos, A., Ibáñez, C., Contreras, A., Casado, R., and Aragoncillo, C., Molecular control of winter dormancy establishment in trees: a review, Span. J. Agric. Res., 2008, vol. 6, pp. 201–210.

  11. Saito, T., Tuan, P.A., Katsumi-Horigane, A., Bai, S., Ito, A., Sekiyama, Y., Ono, H., and Moriguchi, T., Development of flower buds in the japanese pear (Pyrus pyrifolia) from late autumn to early spring, Tree Physiol., 2015, vol. 35, no. 6, pp. 653–662.

    Article  CAS  PubMed  Google Scholar 

  12. Arora, R., Rowland, L.J., and Tanino, K., Induction and release of bud dormancy in woody perennials: a science comes of age, HortScience, 2003, vol. 38, no. 5, pp. 911–921.

    Article  Google Scholar 

  13. Yu, J., Conrad, A.O., Decroocq, V., Zhebentyayeva, T., Williams, D.E., Bennett, D., Roch, G., Audergon, J.-M., Dardick, C., Liu, Z., Abbott, A.G., and Staton, M.E., Distinctive gene expression patterns define endodormancy to ecodormancy transition in apricot and peach, Front. Plant Sci., 2020, vol. 11, art. ID 180.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yamane, H., Wada, M., Honda, C., Matsuura, T., Ikeda, Y., Hirayama, T., Osako, Y., Gao-Takai, M., Kojima, M., and Sakakibara, H., Overexpression of Prunus DAM6 inhibits growth represses bud break competency of dormant buds and delays bud outgrowth in apple plants, PloS One, 2019, vol. 14, no. 4, art. ID e0214788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moser, M., Asquini, E., Miolli, G.V., Weigl, K., Hanke, M.-V., Flachowsky, H., and Si-Ammour, A., The MADS-box gene MdDAM1 controls growth cessation and bud dormancy in apple, Front. Plant Sci., 2020, vol. 11, art. ID 1003.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maurya, J.P. and Bhalerao, R.P., Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective, Ann. Bot., 2017, vol. 120, no. 3, pp. 351–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demidchik, V.V., Shashko, A.Y., Bandarenka, U.Y., Smolikova, G.N., Przhevalskaya, D.A., Charnysh, M.A., Pozhvanov, G.A., Barkosvkyi, A.V., Smolich, I.I., Sokolik, A.I., Yu, M., and Medvedev, S.S., Plant phenomics: fundamental bases software and hardware platforms and machine learning, Russ. J. Plant Physiol., 2020, vol. 67, no. 3, pp. 397–412.

    Article  CAS  Google Scholar 

  18. McAusland, L., Atkinson, J.A., Lawson, T., and Murchie, E.H., High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions, Plant Methods, 2019, vol. 15, art. ID 109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jin, X., Zarco-Tejada, P., Schmidhalter, U., Rey-nolds, M.P., Hawkesford, M.J., Varshney, R.K., Yang, T., Nie, C., Li, Z., Ming, B., Xiao, Y., and Xie, Y., Li. s. high-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms, IEEE Geosci. Remote Sens. Mag., 2020, vol. 9, no. 1, pp. 200–231.

    Article  Google Scholar 

  20. Watt, M., Fiorani, F., Usadel, B., Rascher, U., Muller, O., and Schurr, U., Phenotyping: new windows into the plant for breeders, Annu. Rev. Plant Biol., 2020, vol. 71, pp. 689–712.

    Article  CAS  PubMed  Google Scholar 

  21. Alekseev, A., Matorin, D., Osipov, V., and Venediktov, P., Investigation of the photosynthetic activity of bark phelloderm of arboreous plants using the fluorescent method, Moscow Univ. Biol. Sci. Bull., 2007, vol. 62, no. 4, pp. 164–170.

    Article  Google Scholar 

  22. Tikhonov, K.G., Khristin, M.S., and Klimov, V.V., Sundireva, M.A., Kreslavski, V.D., Sidorov, R.A., Tsidendambayev, V.D., and Savchenko, T.V., Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue, Russ. J. Plant Physiol., 2017, vol. 64, no. 1, pp. 73–82.

    Article  CAS  Google Scholar 

  23. Perks, M.P., Monaghan, S., O’Reilly, C., Osbor-ne, B.A., and Mitchell, D.T., Chlorophyll fluorescence characteristics performance and survival of freshly lifted and cold stored Douglas fir seedlings, Ann. Forest Sci., 2001, vol. 58, no. 3, pp. 225–235.

    Article  Google Scholar 

  24. Samish, R., Dormancy in woody plants, Annu. Rev. Plant Physiol., 1954, vol. 5, pp. 183–204.

    Article  CAS  Google Scholar 

  25. Ritchie, G.A., Effect of freezer storage on bud dormancy release in douglas-fir seedlings, Can. J. For. Res., 1984, vol. 14, no. 2, pp. 186–190.

    Article  Google Scholar 

  26. Colombo, S. and Raitanen, E., Frost hardening in white cedar container seedlings exposed to intermittent short days and cold temperatures, For. Chron., 1991, vol. 67, no. 5, pp. 542–544.

    Article  Google Scholar 

  27. Heide, O. and Prestrud, A., Low temperature but not photoperiod controls growth cessation and dormancy induction and release in apple and pear, Tree Physiol., 2005, vol. 25, no. 1, pp. 109–114.

    Article  CAS  PubMed  Google Scholar 

  28. Heide, O., High autumn temperature delays spring bud burst in boreal trees counterbalancing the effect of climatic warming, Tree Physiol., 2003, vol. 23, no. 13, pp. 931–936.

    Article  CAS  PubMed  Google Scholar 

  29. Heide, O.M., Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species, Sci. Hort., 2008, vol. 115, no. 3, pp. 309–314.

    Article  Google Scholar 

  30. Cook, N.C., Bellen, A., Cronjé, P.J., De Wit, I., Keulemans, W., Putte, A., and Steyn, W., Freezing temperature treatment induces bud dormancy in ‘Granny Smith’ apple shoots, Sci. Hort., 2005, vol. 106, no. 2, pp. 170–176.

    Article  Google Scholar 

  31. Li, C., Junttila, O., Heino, P., and Palva, E.T., Low temperature sensing in silver birch (Betula pendula Roth) ecotypes, Plant Sci., 2004, vol. 167, no. 1, pp. 165–171.

    Article  CAS  Google Scholar 

  32. Christersson, L., The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies, Physiol. Plant., 1978, vol. 44, no. 3, pp. 288–294.

    Article  Google Scholar 

  33. Wake, C.M. and Fennell, A., Morphological physiological and dormancy responses of three Vitis genotypes to short photoperiod, Physiol. Plant., 2000, vol. 109, no. 2, pp. 203–210.

    Article  CAS  Google Scholar 

  34. Solovchenko, A.E., Tkachev, E.N., Tsukanova, E.M., Shurygin, B.M., Khrushchev, S.S., Konyukhov, I.V., and Ptushenko, V.V., Photosynthetic activity of woody plants during winter dormancy and its non-invasive monitoring, Sbornik nauchnykh statei II mezhdunarodnoi nauchno-prakticheskoi konferentsii “Tsifrovizatsiya agropromyshlennogo kompleksa” (Proc. Sci. II Int. Sci. Pract. Conf. “Digitalization of the Agro-Industrial Complex”), Muromtsev, D.Yu, Ed., Tambov: Tambov. Gos. Tekh. Univ., 2020, pp. 352–355.

  35. Li, C., Wu, N., and Liu, S., Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia, Biol. Plant., 2005, vol. 49, no. 1, pp. 65–71.

    Article  Google Scholar 

  36. Jeknić, Z. and Chen, T.H.H., Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods, Plant Cell Physiol., 1999, vol. 40, no. 1, pp. 25–35.

    Article  Google Scholar 

  37. Zhang, H.-S., Li, D.-M., Tan, Q.-P., Gao, H.-Y., and Gao, D.-S., Photosynthetic activities C3 and C4 indicative enzymes and the role of photoperiod in dormancy induction in ‘Chunjie’ peach, Photosynthetica, 2015, vol. 53, no. 2, pp. 269–278.

    Article  CAS  Google Scholar 

  38. Junttila, O., Apical growth cessation and shoot tip abscission in Salix, Physiol. Plant., 1976, vol. 38, no. 4, pp. 278–286.

    Article  CAS  Google Scholar 

  39. Knott, J.E., Effect of a localized photoperiod on spinach, Proc. Am. Soc. Hortic. Sci., 1934, vol. 31, pp. 152–154.

    Google Scholar 

  40. Garner, W. and Allard, H., Further studies in photoperiodism: the response of the plant to relative length of day and night, Science, 1922, vol. 55, no. 1431, pp. 582–583.

    Article  CAS  PubMed  Google Scholar 

  41. Coleman, G.D., Chen, T.H., Ernst, S.G., and Fuchigami, L., Photoperiod control of poplar bark storage protein accumulation, Plant Physiol., 1991, vol. 96, no. 3, pp. 686–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilson, B.C. and Jacobs, D.F., Chlorophyll fluorescence of stem cambial tissue reflects dormancy development in Juglans nigra seedlings, New For., 2012, vol. 43, nos. 5–6, pp. 771–778.

    Article  Google Scholar 

  43. Fowler, S.G., Cook, D., and Thomashow, M.F Low temperature induction of Arabidopsis CBF1 2 and 3 is gated by the circadian clock, Plant Physiol., 2005, vol. 137, no. 3, pp. 961–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Druart, N., Johansson, A., Baba, K., Schrader, J., Sjodin, A., Bhalerao, R.R., Resman, L., Trygg, J., Moritz, T., and Bhalerao, R.P., Environmental and hormonal regulation of the activity–dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks, Plant J., 2007, vol. 50, no. 4, pp. 557–573.

    Article  CAS  PubMed  Google Scholar 

  45. Kitamura, Y., Yamane, H., Yukimori, A., Shimo, H., Numaguchi, K., and Tao, R., Blooming date predictions based on Japanese apricot ‘Nanko’ flower bud responses to temperatures during dormancy, HortScience, 2017, vol. 52, no. 3, pp. 366–370.

    Article  Google Scholar 

  46. Erez, A., Bud dormancy; phenomenon problems and solutions in the tropics and subtropics, in Temperate Fruit Crops in Warm Climates, Erez, A., Ed., Dordrecht: Springer-Verlag, 2000, pp. 17–48.

    Book  Google Scholar 

  47. Erez, A., Chemical control of budbreak, HortScience, 1987, vol. 22, no. 6, pp. 1240–1243.

    CAS  Google Scholar 

  48. Frewen, B.E., Chen, T.H., Howe, G.T., Davis, J., Rohde, A., Boerjan, W., and Bradshaw, H., Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus, Genetics, 2000, vol. 154, no. 2, pp. 837–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dirlewanger, E. and Quero-Garcia, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., Illa, E., Quilot-Turion, B., Audergon, J.M., and Tartarini, S., Comparison of the genetic determinism of two key phenological traits flowering and maturity dates in three Prunus species: peach apricot and sweet cherry, Heredity, 2012, vol. 109, no. 5, pp. 280–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, S., Tan, Q., Sun, M., Xu, G., Li, C., Fu, X., Li, L., Gao, D., and Li, D., Protein changes in response to photoperiod during dormancy induction in peach leaves and flower buds, Sci. Hort., 2018, vol. 239, pp. 114–122.

    Article  CAS  Google Scholar 

  51. Bielenberg, D.G., Wang, Y.E., Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G.L., Scorza, R., and Abbott, A.G., Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation, Tree Genet. Genomes, 2008, vol. 4, no. 3, pp. 495–507.

    Article  Google Scholar 

  52. Leida, C., Conesa, A., Llácer, G., Badenes, M.L., and Ríos, G., Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner, New Phytol., 2012, vol. 193, no. 1, pp. 67–80.

    Article  CAS  PubMed  Google Scholar 

  53. Falavigna, V., Porto, D.D., Silveira, C.P., Olivei-ra, P.R.D., and Revers, L.F., Revers L.F. The control of bud break and flowering time in plants: contribution of epigenetic mechanisms and consequences in agriculture and breeding, in Advances in Botanical Research, Mirouze, M., Bucher, E., Gallusci, P., Eds., Elsevier, 2018, pp. 277–325, vol. 88.

    Google Scholar 

  54. Pedrosa, A.M. and Martins, C., C.d.P.S., Goncal-ves, L.P., and Costa, M.G.C., Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.), PloS One, 2015, vol. 10, no. 12, art. ID e0145785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kaye, C., Neven, L., Hofig, A., Li, Q.-B., Haskell, D., and Guy, C., Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco, Plant Physiol., 1998, vol. 116, no. 4, pp. 1367–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puhakainen, T., Hess, M.W., Mäkelä, P., Svensson, J., Heino, P., and Palva, E.T., Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in arabidopsis, Plant. Mol. Biol., 2004, vol. 54, no. 5, pp. 743–753.

    Article  CAS  PubMed  Google Scholar 

  57. Singh, R.K., Miskolczi, P., Maurya, J.P., and Bhale-rao, R.P., A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy, Curr. Biol., 2019, vol. 29, no. 1, pp. 128–133.

    Article  CAS  PubMed  Google Scholar 

  58. Xie, Y., Chen, P., Yan, Y., Bao, C., Li, X., Wang, L., Shen, X., Li, H., Liu, X., and Niu, C., An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple, New Phytol., 2018, vol. 218, no. 1, pp. 201–218.

    Article  CAS  PubMed  Google Scholar 

  59. Chinnusamy, V., Zhu, J.-K., and Sunkar, R., Gene regulation during cold stress acclimation in plants, in Plant Stress Tolerance, vol. 639: Methods in Molecular Biology (Methods and Protocols), Sunkar, R., Ed., Humana Press, 2010, pp. 39–55.

  60. Artlip, T., McDermaid, A., Ma, Q., and Wisniewski, M., Differential gene expression in non-transgenic and transgenic “M. 26” apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break, Hort. Res., 2019, vol. 6, art. ID 86.

    Article  CAS  Google Scholar 

  61. Tylewicz, S., Petterle, A., Marttila, S., Miskolczi, P., Azeez, A., Singh, R.K., Immanen, J., Mahler, N., Hvidsten, T.R., and Eklund, D.M., Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication, Science, 2018, vol. 360, no. 6385, pp. 212–215.

    Article  CAS  PubMed  Google Scholar 

  62. Eriksson, M.E. and Moritz, T., Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L.× P. tremuloides Michx.), Planta, 2002, vol. 214, no. 6, pp. 920–930.

    Article  CAS  PubMed  Google Scholar 

  63. Rinne, P.L., Welling, A., Vahala, J., Ripel, L., Ruonala, R., Kangasjärvi, J., and van der Schoot, C., Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1 3-β-glucanases to reopen signal conduits and release dormancy in Populus, Plant Cell, 2011, vol. 23, no. 1, pp. 130–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wen, L., Zhong, W., Huo, X., Zhuang, W., Ni, Z., and Gao, Z., Expression analysis of ABA-and GA-related genes during four stages of bud dormancy in Japanese apricot (Prunus mume Sieb. et Zucc), J. Hort. Sci. Biotechnol., 2016, vol. 91, no. 4, pp. 362–369.

    Article  CAS  Google Scholar 

  65. Mølmann, J.A., Asante, D.K., Jensen, J.B., Krane, M.N., Ernstsen, A., Junttila, O., and Olsen, J.E., Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation but not dormancy in PHYA overexpressors and wild-type of hybrid aspen, Plant, Cell Environ., 2005, vol. 28, no. 12, pp. 1579–1588.

    Article  Google Scholar 

  66. Kumar, G., Gupta, K., Pathania, S., Swarnkar, M.K., Rattan, U.K., Singh, G., Sharma, R.K., and Singh, A.K., Chilling affects phytohormone and post-embryonic development pathways during bud break and fruit set in apple (Malus domestica Borkh.), Sci. Rep., 2017, vol. 7, art. ID 42593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Porto, D.D., Bruneau, M., Perini, P., Anzanello, R., Renou, J.-P., and Santos, H.P., D., Fialho, F.B., and Revers, L.F., Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes, J. Exp. Bot., 2015, vol. 66, no. 9, pp. 2659–2672.

    Article  CAS  PubMed  Google Scholar 

  68. Kefeli, V.I., Kof, E.M., Vlasov, P.V., and Kislin, E.N., Prirodnyi ingibitor rosta-abstsizovaya kislota (Natural Growth Inhibitor - Abscisic Acid), Moscow: Inst. Fiziol. Rast. im. K.A. Timiryazeva, 1989.

  69. Rinne, P.L., Kaikuranta, P.M., and Van Der Schoot, C., The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy, Plant J., 2001, vol. 26, no. 3, pp. 249–264.

    Article  CAS  PubMed  Google Scholar 

  70. Busov, V.B., Plant development: dual roles of poplar SVL in vegetative bud dormancy, Curr. Biol., 2019, vol. 29, no. 2, pp. R68–R70.

    Article  CAS  PubMed  Google Scholar 

  71. Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., Bhalerao, R.P., Boerjan, W., and Rohde, A., A molecular timetable for apical bud formation and dormancy induction in poplar, Plant Cell, 2007, vol. 19, no. 8, pp. 2370–2390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oláh, V., Hepp, A., and Mészáros, I., Temporal dynamics in photosynthetic activity of spirodela polyrhiza turions during dormancy release and germination, Environ. Exp. Bot., 2017, vol. 136, pp. 50–58.

    Article  CAS  Google Scholar 

  73. Ruonala, R., Rinne, P.L., Baghour, M., Moritz, T., Tuominen, H., and Kangasjärvi, J., Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene, Plant J., 2006, vol. 46, no. 4, pp. 628–640.

    Article  CAS  PubMed  Google Scholar 

  74. Li, M. and Kim, C., Chloroplast ROS and stress signaling, Plant Commun., 2022, vol. 3, no. 1, art. ID 100264.

  75. Hüner, N., Bode, R., Dahal, K., Busch, F., Possmayer, M., Szyszka, B., Rosso, D., Ensminger, I., Krol, M., Iva-nov, A., and Maxwell, D., Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity, Botany, 2012, vol. 91, no. 3, pp. 127–136.

    Article  CAS  Google Scholar 

  76. Huner, N., Dahal, K., Hollis, L., Bode, R., Rosso, D., Krol, M., and Ivanov, A.G., Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited, Front. Plant Sci., 2012, vol. 3, art. ID 255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ensminger, I., Busch, F., and Huner, N., Photostasis and cold acclimation: sensing low temperature through photosynthesis, Physiol. Plant., 2006, vol. 126, no. 1, pp. 28–44.

    Article  CAS  Google Scholar 

  78. Öquist, G. and Huner, N.P., Photosynthesis of overwintering evergreen plants, Ann. Rev. Plant Biol., 2003, vol. 54, pp. 329–355.

    Article  CAS  Google Scholar 

  79. Sofronova, V., Antal, T., Dymova, O., and Golovko, T., Seasonal changes in primary photosynthetic events during low temperature adaptation of Pinus sylvestris in Central Yakutia, Russ. J. Plant Physiol., vol. 65, no. 5, pp. 658–666.

  80. Lípová, L., Krchňák, P., Komenda, J., and Ilík, P., Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo, Biochim. Biophys. Acta, Bioenerg., 2010, vol. 1797, no. 1, pp. 63–70.

    Article  CAS  Google Scholar 

  81. Yang, Q., Blanco, N.E., Hermida-Carrera, C., Lehotai, N., Hurry, V., and Strand, Å., Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring, Nat. Commun., 2020, vol. 11, no. 1, art. ID 128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tikkanen, M. and Grebe, S., Switching off photoprotection of photosystem I–a novel tool for gradual PSI photoinhibition, Physiol. Plant., 2018, vol. 162, no. 2, pp. 156–161.

    Article  CAS  PubMed  Google Scholar 

  83. Vogg, G., Heim, R., Hansen, J., Schäfer, C., and Beck, E., Frost hardening and photosynthetic performance of scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function, Planta, 1998, vol. 204, no. 2, pp. 193–200.

    Article  CAS  Google Scholar 

  84. Chang, C.Y.Y., Bräutigam, K., Hüner, N.P., and Ensminger, I., Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers, New Phytol., 2021, vol. 229, no. 2, pp. 675–691.

    Article  PubMed  Google Scholar 

  85. Valcke, R., Can chlorophyll fluorescence imaging make the invisible visible?, Photosynthetica, 2021, vol. 51, pp. 381–398.

    Article  CAS  Google Scholar 

  86. Vlaovic, J., Balen, J., Grgic, K., Zagar, D., Galic, V., and Simic, D., Proceedings of 2020 International Conference on Smart Systems and Technologies (SST), Zagar, D., Martinovic, G., and Rimae, S., Eds., Computer Science and Information Technology Osijek, 2020, pp. 245–250.

  87. Hawkins, C. and Lister, G., In vivo chlorophyll fluorescence as a possible indicator of the dormancy stage in Douglas-fir seedlings, Can. J. For. Res., 1985, vol. 15, no. 4, pp. 607–612.

    Article  CAS  Google Scholar 

  88. Damesin, C., Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance, New Phytol., 2003, vol. 158, no. 3, pp. 465–475.

    Article  CAS  PubMed  Google Scholar 

  89. Lennartsson, M. and Ögren, E., Predicting the cold hardiness of willow stems using visible and near-infrared spectra and sugar concentrations, Trees, 2003, vol. 17, no. 5, pp. 463–470.

    Article  CAS  Google Scholar 

  90. Linkosalo, T., Heikkinen, J., Pulkkinen, P., and Mäkipää, R., Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in scots pine compared to norway spruce as well as during spring compared to autumn, Front. Plant Sci., 2014, vol. 5, art. ID 264.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sundblad, L.-G., Sjöström, M., Malmberg, G., and Öquist, G., Prediction of frost hardiness in seedlings of Scots pine (Pinus sylvestris) using multivariate analysis of chlorophyll a fluorescence and luminescence kinetics, Can. J. For. Res., 1990, vol. 20, no. 5, pp. 592–597.

    Article  CAS  Google Scholar 

  92. Sakar, E.H., El Yamani, M., and Rharrabti, Y., Frost susceptibility of five almond [Prunus dulcis (mill.) DA Webb] cultivars grown in north-eastern Morocco as revealed by chlorophyll fluorescence, Int. J. Fruit Sci., 2017, vol. 17, no. 4, pp. 415–422.

    Article  Google Scholar 

  93. Savitch, L.V., Leonardos, E.D., Krol, M., Jansson, S., Grodzinski, B., Huner, N., and Öquist, G., Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation, Plant, Cell Environ., 2002, vol. 25, no. 6, pp. 761–771.

    Article  CAS  Google Scholar 

  94. Corcuera, L., Gil-Pelegrin, E., and Notivol, E., Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures, PLoS One, 2011, vol. 6, art. ID e28772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Öquist, G., Brunes, L., Hällgren, J.-E., Gezelius, K., Hallén, M., and Malmberg, G Effects of artificial frost hardening and winter stress on net photosynthesis photosynthetic electron transport and RuBP carboxylase activity in seedlings of Pinus silvestris, Physiol. Plant., 1980, vol. 48, no. 4, pp. 526–531.

    Article  Google Scholar 

  96. Grebe, S., Trotta, A., Bajwa, A.A., Suorsa, M., Gollan, P.J., Jansson, S., Tikkanen, M., and Aro, E.M., The unique photosynthetic apparatus of Pinaceae—Analysis of photosynthetic complexes in Norway spruce (Picea abies), J. Exp. Bot., 2019, vol. 70, no. 12, pp. 3211–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grebe, S., Trotta, A., Bajwa, A., Mancinia, I., Bag, P., Jansson, S., Tikkanen, M., and Aro, E.M., Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 30, pp. 17499–17509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ivanov, A., Sane, P., Zeinalov, Y., Simidjiev, I., Huner, N., and Öquist, G., Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence, Planta, 2002, vol. 215, no. 3, pp. 457–465.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, C., Atherton, J., Penuelas, J., Filella, I., Kolari, P., Aalto, J., Ruhanen, H., Back, J., and Porcar-Castell, A., Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage?, Plant, Cell Environ., vol. 42, no. 12, pp. 3264–3279.

Download references

ACKNOWLEDGMENTS

The results were obtained using the resources of the Research Equipment Sharing Center of Derzhavin State University, Tambov.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the project under the agreement no. 075-15-2021-709 (unique project identifier RF–2296.61321X0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Solovchenko.

Ethics declarations

Conflict of Interest. The authors declare that they have no conflicts of interest.

Statement on the Welfare of Animals. The article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovchenko, A.E., Tkachyov, E.N., Tsukanova, E.M. et al. Winter Dormancy of Woody Plants and Its Noninvasive Monitoring. Moscow Univ. Biol.Sci. Bull. 77, 41–53 (2022). https://doi.org/10.3103/S0096392522020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392522020110

Keywords:

Navigation