Skip to main content
Log in

Analysis of Nucleosome Structure in Polyacrylamide Gel by the Förster Resonance Energy Transfer Method

  • Methods
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

A technique for analyzing the structure of (Cy3, Cy5)-labeled nucleosomes in polyacrylamide gel after electrophoresis under native conditions was developed based on the Förster resonance energy transfer (FRET) effect. It has been shown that the correct application of this technique requires monitoring of nonspecific intermolecular FRET and fluorescence reabsorption. A comparative analysis of the results of the FRET measurements of two types of nucleosomes and their complexes with yeast protein FACT was performed, which confirmed the similarity of the structural features of nucleosomes detected in the gel and in aqueous solution. Application of FRET analysis in combination with electrophoresis makes it possible not only to separate, visualize components of a complex mixture, and to evaluate their relative content but also to characterize the structural differences between these complexes in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valieva, M.E., Armeev, G.A., Kudryashova, K.S., Gerasimova, N.S., Shaytan, A.K., Kulaeva, O.I., McCullough, L.L., Formosa, T., Georgiev, P.G., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Large-scale ATP-independent nucleosome unfolding by a histone chaperone, Nat. Struct. Mol. Biol., 2016, vol. 23, no. 12, pp. 1111–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dechassa, M.L., Sabri, A., Pondugula, S., Kassabov, S.R., Chatterjee, N., Kladde, M.P., and Bartholomew, B., SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes, Mol. Cell, 2010, vol. 38, no. 4, pp. 590–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kulaeva, O.I., Hsieh, F.K., and Studitsky, V.M., RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 25, pp. 11325–11330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang, H.W., Pandey, M., Kulaeva, O.I., Patel, S.S., and Studitsky, V.M., Overcoming a nucleosomal barrier to replication, Sci. Adv., 2016, vol. 2, no. 11.

    Google Scholar 

  5. Pestov, N.A., Gerasimova, N.S., Kulaeva, O.I., and Studitsky, V.M., Structure of transcribed chromatin is a sensor of DNA damage, Sci. Adv., 2015, vol. 1, no. 6.

    Google Scholar 

  6. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J., Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, 1997, vol. 389, no. 6648, pp. 251–260.

    Article  CAS  PubMed  Google Scholar 

  7. Gaykalova, D.A., Kulaeva, O.I., Volokh, O., Shaytan, A.K., Hsieh, F.K., Kirpichnikov, M.P., Sokolova, O.S., and Studitsky, V.M., Structural analysis of nucleosomal barrier to transcription, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 43, pp. 5787–5795.

    Article  Google Scholar 

  8. Kudryashova, K.S., Chertkov, O.V., Nikitin, D.V., Pestov, N.A., Kulaeva, O.I., Efremenko, A.V., Solonin, A.S., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET, Methods Mol. Biol., 2015, vol. 1288, pp. 395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buning, R., Kropff, W., Martens, K., and van Noort, J., spFRET reveals changes in nucleosome breathing by neighboring nucleosomes, J. Phys. Condens. Matter, 2015, vol. 27, no. 6.

    Google Scholar 

  10. Gansen, A., Tóth, K., Schwarz, N., and Langowski, J., Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study, Nucleic Acid Res., 2015, vol. 43, no. 3, pp. 1433–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kudryashova, K.S., Nikitin, D.V., Chertkov, O.V., Gerasimova, N.S., Valieva, M.E., Studitsky, V.M., and Feofanov, A.V., Development of fluorescently labeled mononucleosomes for the investigation of transcription mechanisms by single complex microscopy, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, no. 4, pp. 189–193.

    Article  Google Scholar 

  12. Sultanov, D., Gerasimova, N., Kudryashova, K., Maluchenko, N., Kotova, E., Langelier, M.-F., Pascal, J., Kirpichnikov, M., Feofanov, A., and Studitsky, V., Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy, AIMS Genet., 2017, vol. 4, no. 1, pp. 21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Valieva, M.E., Gerasimova, N.S., Kudryashova, K.S., Kozlova, A.L., Kirpichnikov, M.P., Hu, Q., Botuyan, M.V., Mer, G., Feofanov, A.V., and Studitsky, V.M., Stabilization of nucleosomes by histone tails and by FACT revealed by spFRET microscopy, Cancers (Basel), 2017, vol. 9, no. 1, p. 3. doi doi 10.3390/cancers9010003

    Article  Google Scholar 

  14. Shimahara, H., Hirano, T., Ohya, K., Matsuta, S., Seeram, S.S., and Tate, S., Nucleosome structural changes induced by binding of non-histone chromosomal proteins HMGN1 and HMGN2, FEBS Open Bio, 2013, vol. 3, pp. 184–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kulaeva, O.I., Gaykalova, D.A., Pestov, N.A., Golovastov, V.V., Vassylyev, D.G., Artsimovitch, I., and Studitsky, V.M., Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II, Nat. Struct. Mol. Biol., 2009, vol. 16, no. 12, pp. 1272–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaykalova, D.A., Kulaeva, O.I., Bondarenko, V.A., and Studitsky, V.M., Preparation and analysis of uniquely positioned mononucleosomes, Methods Mol. Biol., 2009, vol. 523, pp. 109–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xin, H., Takahata, S., Blanksma, M., McCullough, L., Stillman, D.J., and Formosa, T., yFACT induces global accessibility of nucleosomal DNA without H2AH2B displacement, Mol. Cell, 2009, vol. 35, no. 3, pp. 365–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Feofanov.

Additional information

Original Russian Text © O.V. Chertkov, M.E. Valieva, N.V. Malyuchenko, A.V. Feofanov, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2017, Vol. 72, No. 4, pp. 229–234.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chertkov, O.V., Valieva, M.E., Malyuchenko, N.V. et al. Analysis of Nucleosome Structure in Polyacrylamide Gel by the Förster Resonance Energy Transfer Method. Moscow Univ. Biol.Sci. Bull. 72, 196–200 (2017). https://doi.org/10.3103/S0096392517040034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392517040034

Keywords