Skip to main content
Log in

Effect of sodium and potassium ions on conformation of linker parts of nucleosomes

  • Molecular Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The chromatin structure and DNA accessibility to proteins depend on the structure of linker DNA entering and exiting the nucleosome. Since DNA is a negatively charged polymer, the conformation of linker DNA, in turn, depends on the ionic microenvironment. In the present work, the effect of Na+ and K+ ions on the structure of mono nucleosome linker DNA was studiedby fluorescence microscopy of single complexes. It was revealed that nucleosomes adopt one of two conformational states, whose occupancy is significantly changed after the substitution of K+ ions by Na+. These changes are likely caused by different interaction of Na+ and K+ with DNA in the regions of DNA entry and exit of the nucleosome. Cation-dependent changes in the conformation of linker DNA may affect topological barriers in the nucleosome, structure of polynucleosome chromatin, and interactions with different protein factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ngo, T.T., Zhang, Q., Zhou, R., Yodh, J.G., and Ha, T., Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility, Cell, 2015, vol. 160 N, pp. 1135–1144.

    Google Scholar 

  2. Li, G., Levitus, M., Bustamante, C., and Widom, J., Rapid spontaneous accessibility of nucleosomal DNA, Nat. Struct. Mol. Biol., 2005, vol. 12, no. 1, pp. 46–53.

    Article  CAS  PubMed  Google Scholar 

  3. Gansen, A., Toth, K., Schwarz, N., and Langowski, J., Structural variability of nucleosomes detected by single- pair Forster resonance energy transfer: histone acetylation, sequence variation, and salt effects, J. Phys. Chem. B, 2009, vol. 113, no. 9, pp. 2604–2613.

    Article  CAS  PubMed  Google Scholar 

  4. Gansen, A., Valeri, A., Hauger, F., Felekyan, S., Kalinin, S., Toth, K., Langowski, J., and Seidel, C.A., Nucleosome disassembly intermediates characterized by single-molecule FRET, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 36, pp. 15308–15313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zinchenko, A.A. and Yoshikawa, K., Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment, Biophys. J., 2005, vol. 88, no. 6, pp. 4118–4123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Savelyev, A. and Papoian, G.A., Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+), J. Am. Chem. Soc., 2006, vol. 128, no. 45, pp. 14506–14518.

    Article  CAS  PubMed  Google Scholar 

  7. Materese, C.K., Savelyev, A., and Papoian, G.A., Counterion atmosphere and hydration patterns near a nucleosome core particle, J. Am. Chem. Soc., 2009, vol. 131, no. 41, pp. 15005–15013.

    Article  CAS  PubMed  Google Scholar 

  8. Gaykalova, D.A., Kulaeva, O.I., Bondarenko, V.A., and Studitsky, V.M., Preparation and analysis of uniquely positioned mononucleosomes, in Chromatin Protocols. Methods Mol. Biol., Chellappan, S.P., Ed., Humana Press, 2009, vol. 523, pp. 109–123.

    Chapter  Google Scholar 

  9. Kudryashova, K.S., Chertkov, O.V., Nikitin, D.V., Pestov, N.A., Kulaeva, O.I., Efremenko, A.V., Solonin, A.S., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET, in Chromatin Protocols. Methods Mol. Biol., Chellappan, S.P., Ed., New York: Springer, 2015, vol. 1288, pp. 395–412.

    Google Scholar 

  10. Lyubitelev, A.V., Kudryashova, K.S., Mikhaylova, M.S., Malyuchenko, N.V., Chertkov, O.V., Studitsky, V.M., Feofanov, A.V., and Kirpichnikov, M.P., Change in conformation of linker DNA upon binding of histone H1.5 to nucleosome: Fluorescent microscopy of single complexes, Moscow Univ. Biol. Sci. Bull., 2016, vol. 71, no. 2, pp. 108–113.

    Article  Google Scholar 

  11. Manning, G.S., The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force, Biophys. J., 2006, vol. 91, no. 10, pp. 3607–3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valieva, M.E., Armeev, G.A., Kudryashova, K.S., Gerasimova, N.S., Shaytan, A.K., Kulaeva, O.I., McCullough, L.L., Formosa, T., Georgiev, P.G., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Large-scale ATP-independent nucleosome unfolding by a histone chaperone, Nat. Struct. Mol. Biol., 2016, vol. 23, no. 12, pp. 1111–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sultanov, D., Gerasimova, N., Kudryashova, K., Maluchenko, N., Kotova, E., Langelier, M.F., Pascal, J., Kirpichnikov, M., Feofanov, A., and Studitsky, V., Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy, AIMS Genet., 2017, vol. 4, no. 1, pp. 21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choy, J.S. and Lee, T.H., Structural dynamics of nucleosomes at single-molecule resolution, Trends Biochem. Sci., 2012, vol. 37, no. 10, pp. 425–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei, S., Falk, S.J., Black, B.E., and Lee, T.H., A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome, Nucleic Acid Res., 2015, vol. 43, no. 17.

    Google Scholar 

  16. Koopmans, W.J., Brehm, A., Logie, C., Schmidt, T., and van Noort, J., Single-pair FRET microscopy reveals mononucleosome dynamics, J. Fluoresc., 2007, vol. 17, no. 6, pp. 785–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kenzaki, H. and Takada, S., Partial unwrapping and histone tail dynamics in nucleosome revealed by coarse-grained molecular simulations, PLoS Comput. Biol., 2015, vol. 11, no. 8.

    Google Scholar 

  18. Li, Z. and Kono, H., Distinct roles of histone H3 and H2A tails in nucleosome stability, Sci. Rep., 2016, vol. 6, p. 31437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forties, R.A., North, J.A., Javaid, S., Tabbaa, O.P., Fishel, R., Poirier, M.G., and Bundschuh, R., A quantitative model of nucleosome dynamics, Nucleic Acid Res., 2011, vol. 39, no. 19, pp. 8306–8313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Feofanov.

Additional information

Original Russian Text © A.V. Lyubitelev, V.M. Studitsky, A.V. Feofanov, M.P. Kirpichnikov, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2017, Vol. 72, No. 3, pp. 169–173.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubitelev, A.V., Studitsky, V.M., Feofanov, A.V. et al. Effect of sodium and potassium ions on conformation of linker parts of nucleosomes. Moscow Univ. Biol.Sci. Bull. 72, 146–150 (2017). https://doi.org/10.3103/S0096392517030075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392517030075

Keywords

Navigation