Skip to main content
Log in

Malnutrition in early life and risk of type 2 diabetes: Theoretical framework and epidemiological evidence

  • Gerontology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

There exist numerous experimental and epidemiological data indicating that malnutrition in early development may influence the risk of developing metabolic disorders in adult life, including type 2 diabetes mellitus (T2DM). Epidemiological evidence for such a relationship was mostly obtained in quasi-experimental studies (natural experiments) carried out on the populations of different countries. These studies revealed that exposure to famine in prenatal and/or early postnatal development is associated with increased risk of developing type 2 diabetes in adult life. Epigenetic regulation of gene activity is considered to be the main mechanism linking starvation in early life and increased risk of type 2 diabetes in adulthood. It is believed that exposure to famine during pregnancy may induce persistent epigenetic variations that are thought to have some adaptive value in the early postnatal development but that also lay grounds for metabolic disorders, including type 2 diabetes, in later life. The present review consolidates and discusses the data indicating the possibility of early developmental programming of type 2 diabetes obtained in the course of quasi-experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilmot, E. and Idris, I, Early onset type 2 diabetes: Risk factors, clinical impact and management, Ther. Adv. Chronic. Dis., 2014, vol. 5, no. 6, pp. 234–244.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jaacks, L.M., Siegel, K.R., Gujral, U.P., and Narayan, K.M, Type 2 diabetes: A 21st century epidemic, Best Pract. Res. Clin. Endocrinol. Metab., 2016, vol. 30, no. 3, pp. 331–343.

    Article  PubMed  Google Scholar 

  3. Nielsen, J.H., Haase, T.N., Jaksch, C., et al., Impact of fetal and neonatal environment on beta cell function and development of diabetes, Acta Obstet. Gynecol. Scand., 2014, vol. 93, no. 11, pp. 1109–1122.

    Article  PubMed  Google Scholar 

  4. Dabelea, D., Hanson, R.L., Lindsay, R.S., Pettitt, D.J., Imperatore, G., Gabir, M.M., Roumain, J., Bennett, P.H., and Knowler, W.C, Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships, Diabetes, 2000, vol. 49, no. 12, pp. 2208–2211.

    Article  CAS  PubMed  Google Scholar 

  5. Eriksson, J.G, Developmental origins of health and disease–from a small body size at birth to epigenetics, Ann. Med., 2016, vol. 48, no. 6, pp. 456–467.

    Article  PubMed  Google Scholar 

  6. Kim, J.B, Dynamic cross talk between metabolic organs in obesity and metabolic diseases, Exp. Mol. Med., 2016, vol. 48, no.3.

    Google Scholar 

  7. Nettle, D. and Bateson, M, Adaptive developmental plasticity: What is it, how can we recognize it and when can it evolve?, Proc. Biol. Sci., 2015, vol. 282, no. 1812.

    Google Scholar 

  8. Hales, C.N. and Barker, D.J, Type 2 (non-insulindependent) diabetes mellitus: The thrifty phenotype hypothesis, Diabetologia, 1992, vol. 35, no. 7, pp. 595–601.

    Article  CAS  PubMed  Google Scholar 

  9. Thorn, S.R., Rozance, P.J., Brown, L.D., and Hay, W.W, Jr., The intrauterine growth restriction phenotype: Fetal adaptations and potential implications for later life insulin resistance and diabetes, Semin. Reprod. Med., 2011, vol. 29, no. 3, pp. 225–236.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carolan-Olah, M., Duarte-Gardea, M., and Lechuga, J., A critical review: Early life nutrition and prenatal programming for adult disease, J. Clin. Nurs., 2015, vol. 24, nos 23-24, pp. 3716–3729.

    Article  PubMed  Google Scholar 

  11. Tarry-Adkins, J.L. and Ozanne, S.E, Nutrition in early life and age-associated diseases, Ageing Res. Rev., 2016, vol. pii, pp. S1568–S1637.

    Google Scholar 

  12. Whincup, P.H., Kaye, S.J., Owen, C.G., et al., Birth weight and risk of type 2 diabetes: A systematic review, J. Am. Med. Assoc., 2008, vol. 300, no. 24, pp. 2886–2897.

    Article  CAS  Google Scholar 

  13. Kensara, O.A., Wootton, S.A., Phillips, D.I., Patel, M., Jackson, A.A., and Elia, M, Hertfordshire study group. Fetal programming of body composition: Relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen, Am. J. Clin. Nutr., 2005, vol. 82, no. 5, pp. 980–987.

    CAS  PubMed  Google Scholar 

  14. Morrison, K.M., Ramsingh, L., Gunn, E., Streiner, D, Van Lieshout, R., Boyle, M., Gerstein, H., Schmidt, L., and Saigal, S., Cardiometabolic health in adults born premature with extremely low birth weight, Pediatrics, 2016, vol. 138, no.4.

    Google Scholar 

  15. Stirrat, L.I. and Reynolds, R.M., The effect of fetal growth and nutrient stresses on steroid pathways, J. Steroid. Biochem. Mol. Biol., 2016, vol. 160, pp. 214–220.

    Article  CAS  PubMed  Google Scholar 

  16. Frankel, S., Elwood, P., Sweetnam, P., Yarnell, J., and Smith, G.D, Birthweight, body-mass index in middle age., and incident coronary heart disease, Lancet, 1996, vol. 348, pp. 1478–1480.

    CAS  PubMed  Google Scholar 

  17. Harder, T., Rodekamp, E., Schellong, K., Dudenhausen, J.W., and Plagemann, A, Birth weight and subsequent risk of type 2 diabetes: A meta-analysis, Am. J. Epidemiol., 2007, vol. 165, no. 8, pp. 849–857.

    Article  PubMed  Google Scholar 

  18. Dulloo, A.G, Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance, Best Pract. Res. Clin. Endocrinol. Metab., 2008, vol. 22, no. 1, pp. 155–171.

    Article  CAS  PubMed  Google Scholar 

  19. Cho, W.K. and Suh, B.K, Catch-up growth and catchup fat in children born small for gestational age, Korean J. Pediatr., 2016, vol. 59, no. 1, pp. 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ong, T.P. and Ozanne, S.E, Developmental programming of type 2 diabetes: Early nutrition and epigenetic mechanisms, Curr. Opin. Clin. Nutr. Metab. Care, 2015, vol. 18, no. 4, pp. 354–360.

    Article  CAS  PubMed  Google Scholar 

  21. Paluch, B.E., Naqash, A.R., Brumberger, Z., Nemeth, M.J., and Griffiths, E.A., Epigenetics: A primer for clinicians, Blood Rev., 2016, vol. 30, no. 4, pp. 285–295.

    Article  CAS  PubMed  Google Scholar 

  22. van Dijk, S.J., Tellam, R.L., Morrison, J.L., Muhlhausler, B.S., and Molloy, P.L, Recent developments on the role of epigenetics in obesity and metabolic disease, Clin. Epigenetics, 2015, vol. 7, p.66.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vaiserman, A, Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: A potential link to disease susceptibility?, Clin. Epigenet., 2015, vol. 7, no. 1, p.96.

    Article  Google Scholar 

  24. Geraghty, A.A., Lindsay, K.L., Alberdi, G., McAuliffe, F.M., and Gibney, E.R, Nutrition during pregnancy impacts offspring’s epigenetic status–evidence from human and animal studies, Nutr. Metab. Insights, 2016, vol. 8, no. 1, pp. 41–47.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alam, F., Islam, M.A., Gan, S.H., Mohamed, M., and Sasongko, T.H., DNA methylation: An epigenetic insight into type 2 diabetes mellitus, Curr. Pharm. Des., 2016, vol. 22, no. 28, pp. 4398–4419.

    Article  CAS  PubMed  Google Scholar 

  26. Kwak, S.H. and Park, K.S, Recent progress in genetic and epigenetic research on type 2 diabetes, Exp. Mol. Med., 2016, vol. 48, no.3.

    Google Scholar 

  27. A Dictionary of Epidemiology, Porta, M., Ed., New York: Oxford Univ. Press, 2008, 5th ed.

  28. Heijmans, B.T., Tobi, E.W., Lumey, L.H., and Slagboom, P.E, The epigenome: Archive of the prenatal environment, Epigenetics, 2009, vol. 4, no. 8, pp. 526–531.

    Article  CAS  PubMed  Google Scholar 

  29. Lumey, L.H., Stein, A.D., and Susser, E, Prenatal famine and adult health, Annu. Rev. Public Health, 2011, vol. 32, pp. 237–262.

    Article  CAS  PubMed  Google Scholar 

  30. Roseboom, T.J., Painter, R.C., van Abeelen, A.F., Veenendaal, M.V., and de Rooij, S.R, Hungry in the womb: What are the consequences? Lessons from the Dutch famine, Maturitas, 2011, vol. 70, no. 2, pp. 141–145.

    Article  PubMed  Google Scholar 

  31. Heijmans, B.T., Tobi, E.W., Stein, A.D., Putter, H., Blauw, G.J., Susser, E.S., Slagboom, P.E., and Lumey, L.H, Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proc. Natl Acad. Sci. U. S. A., 2008, vol. 105, no. 44, pp. 17046–17049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Abeelen, A.F., Elias, S.G., Bossuyt, P.M., Grobbee, D.E., van der Schouw, Y.T., Roseboom, T.J., and Uiterwaal, C.S, Famine exposure in the young and the risk of type 2 diabetes in adulthood, Diabetes, 2012, vol. 61, no. 9, pp. 2255–2260.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Portrait, F., Teeuwiszen, E., and Deeg, D, Early life undernutrition and chronic diseases at older ages: The effects of the Dutch famine on cardiovascular diseases and diabetes, Soc. Sci. Med., 2011, vol. 73, no. 5, pp. 711–718.

    Article  PubMed  Google Scholar 

  34. Lumey, L.H., Terry, M.B., Delgado-Cruzata, L., Liao, Y., Wang, Q., Susser, E., McKeague, I., and Santella, R.M, Adult global DNA methylation in relation to pre-natal nutrition, Int. J. Epidemiol., 2012, vol. 41, no. 1, pp. 116–123.

    Article  CAS  PubMed  Google Scholar 

  35. Tobi, E.W., Lumey, L.H., Talens, R.P., Kremer, D., Putter, H., Stein, A.D., Slagboom, P.E., and Heijmans, B.T., DNA methylation differences after exposure to prenatal famine are common and timing-and sex-specific, Hum. Mol. Genet., 2009, vol. 18, no. 21, pp. 4046–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thurner, S., Klimek, P., Szell, M., Duftschmid, G., Endel, G., Kautzky-Willer, A., and Kasper, D.C, Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 12, pp. 4703–4707.

    Article  CAS  PubMed  Google Scholar 

  37. Klitz, W. and Niklasson, B, Viral underpinning to the Austrian record of type 2 diabetes?, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 30, pp. E2750–E2750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thurner, S., Klimek, P., Szell, M., Duftschmid, G., Endel, G., Kautzky-Willer, A., and Kasper, D.C, Reply to Klitz and Niklasson: Can viral infections explain the cross-sectional Austrian diabetes data?, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 30, pp. E2751–E2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lumey, L.H., Khalangot, M.D., and Vaiserman, A.M, Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: A retrospective cohort study, Lancet Diabetes Endocrinol., 2015, vol. 3, no. 10, pp. 787–794.

    Article  CAS  PubMed  Google Scholar 

  40. Sparén, P., Vågerö, D., Shestov, D.B., Plavinskaja, S., Parfenova, N., Hoptiar, V., Paturot, D., and Galanti, M.R, Long term mortality after severe starvation during the siege of leningrad: Prospective cohort study, Brit. Med. J., 2004, vol. 328, no. 7430, p.11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stanner, S.A., Bulmer, K., Andrès, C., Lantseva, O.E., Borodina, V., Poteen, V.V., and Yudkin, J.S, Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study, Brit. Med. J., 1997, vol. 315, no. 7119, pp. 1342–1348.

    CAS  PubMed  Google Scholar 

  42. Stanner, S.A. and Yudkin, J.S, Fetal programming and the Leningrad siege study, Twin Res., 2001, vol. 4, no. 5, pp. 287–292.

    Article  CAS  PubMed  Google Scholar 

  43. Bateson, P, Fetal experience and good adult design, Int. J. Epidemiol., 2001, vol. 30, no. 5, pp. 928–934.

    Article  CAS  PubMed  Google Scholar 

  44. Khoroshinina, L.P. and Zhavoronkova, N.V, Starving in childhood and diabetes mellitus in elderly age, Adv. Gerontol., 2008, vol. 21, no. 4, pp. 684–687.

    CAS  PubMed  Google Scholar 

  45. Khoroshinina, L.P, Peculiarities of somatic diseases in people of middle and old age survived Leningrad siege at childhood, Adv. Gerontol., 2004, vol. 14, pp. 55–65.

    CAS  PubMed  Google Scholar 

  46. Koupil, I., Shestov, D.B., Sparén, P., Plavinskaja, S., Parfenova, N., and Vågerö, D, Blood pressure, hypertension and mortality from circulatory disease in men and women who survived the siege of leningrad, Eur. J. Epidemiol., 2007, vol. 22, no. 4, pp. 223–234.

    Article  PubMed  Google Scholar 

  47. Jowett, A.J, The demographic responses to famine: The case of China 1958–61, GeoJournal, 1991, vol. 23, no. 2, pp. 135–146.

    Article  CAS  PubMed  Google Scholar 

  48. Li, C. and Lumey, L.H, Exposure to the Chinese famine of 1959–61 in early life and current health conditions: A systematic review and meta-analysis, Lancet, 2016, vol. 388, no. 1, p.63.

    Article  Google Scholar 

  49. Li, Y., He, Y., Qi, L., Jaddoe, V.W., Feskens, E.J., Yang, X., Ma, G., and Hu, F.B, Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood, Diabetes, 2010, vol. 59, no. 10, pp. 2400–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, N., Wang, X., Han, B., Li, Q., Chen, Y., Zhu, C., Chen, Y., Xia, F., Cang, Z., Zhu, C., et al., Is exposure to famine in childhood and economic development in adulthood associated with diabetes?, J. Clin. Endocrinol. Metab., 2015, vol. 100, no. 12, pp. 4514–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, N., Cheng, J., Han, B., Li, Q., Chen, Y., Xia, F., Jiang, B., Jensen, M.D., and Lu, Y, Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: An observational study, Diabetologia, 2017, vol. 60, no. 2, pp. 262–269.

    Article  PubMed  Google Scholar 

  52. Wang, J., Li, Y., Han, X., et al., Exposure to the Chinese Famine in childhood increases type 2 diabetes risk in adults, J. Nutr., 2016, vol. 146, no. 11, pp. 2289–2295.

    Article  PubMed  Google Scholar 

  53. Li, J., Liu, S., Li, S., et al., Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: A population-based cohort study of families in Suihua, China, Am. J. Clin. Nutr., 2017, vol. 105, no. 1, pp. 221–227.

    Article  PubMed  Google Scholar 

  54. Miller, J.P, Medical relief in the Nigerian civil war, Lancet, 1970, vol. 760, no. 1, pp. 1330–1334.

    Article  CAS  PubMed  Google Scholar 

  55. Hult, M., Tornhammar, P., Ueda, P., Chima, C., Bonamy, A.K., Ozumba, B., and Norman, M, Hypertension, diabetes and overweight: Looming legacies of the Biafran famine, PLoS One, 2010, vol. 5, no.10.

    Google Scholar 

  56. Bercovich, E., Keinan-Boker, L., and Shasha, S.M, Long-term health effects in adults born during the holocaust, Isr. Med. Assoc. J., 2014, vol. 16, no. 4, pp. 203–207.

    PubMed  Google Scholar 

  57. Keinan-Boker, L., Shasha-Lavsky, H., Eilat-Zanani, S., Edri-Shur, A., and Shasha, S.M, Chronic health conditions in Jewish Holocaust survivors born during World War II, Isr. Med. Assoc. J., 2015, vol. 17, no. 4, pp. 206–212.

    PubMed  Google Scholar 

  58. Watson, P.E. and McDonald, B.W, Seasonal variation of nutrient intake in pregnancy: Effects on infant measures and possible influence on diseases related to season of birth, Eur. J. Clin Nutr., 2007, vol. 61, no. 11, pp. 1271–1280.

    Article  CAS  PubMed  Google Scholar 

  59. Flouris, A.D., Spiropoulos, Y., Sakellariou, G.J., and Koutedakis, Y, Effect of seasonal programming on fetal development and longevity: Links with environmental temperature, Am. J. Hum. Biol., 2009, vol. 21, no. 2, pp. 214–216.

    Article  PubMed  Google Scholar 

  60. Finch, C.E. and Crimmins, E.M, Inflammatory exposure and historical changes in human life-spans, Science, 2004, vol. 305, no. 5691, pp. 1736–1739.

    Article  CAS  PubMed  Google Scholar 

  61. Lowell, W.E. and Davis, G.E, The light of life: Evidence that the sun modulates human lifespan, Med. Hypotheses, 2008, vol. 70, no. 3, pp. 501–507.

    Article  PubMed  Google Scholar 

  62. Smith, A.D., Crippa, A., Woodcoc, J., and Brage, S, Physical activity and incident type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of prospective cohort studies, Diabetologia, 2016, vol. 59, no. 12, pp. 2527–2545.

    Article  CAS  PubMed  Google Scholar 

  63. Vaiserman, A.M, Early-life exposure to substance abuse and risk of type 2 diabetes in adulthood, Curr. Diab. Rep., 2015, vol. 15, no.8.

    Google Scholar 

  64. Chodick, G., Flash, S., Deoitch, Y., and Shalev, V, Seasonality in birth weight: Review of global patterns and potential causes, Hum. Biol., 2009, vol. 81, no. 4, pp. 463–477.

    Article  PubMed  Google Scholar 

  65. Banegas, J.R., Rodríguez-Artalejo, F., de la Cruz, J.J., Graciani, A., Villar, F., and del Rey-Calero, J., Adult men born in spring have lower blood pressure, J. Hypertens., 2000, vol. 18, no. 12, pp. 1763–1766.

    Article  CAS  PubMed  Google Scholar 

  66. Phillips, D.I. and Young, J.B, Birth weight, climate at birth and the risk of obesity in adult life, Int. J. Obes. Relat. Metab. Disord., 2000, vol. 24, no. 3, p.281.

    Article  CAS  PubMed  Google Scholar 

  67. Wattie, N., Ardern, C.I., and Baker, J, Season of birth and prevalence of overweight and obesity in Canada, Early Hum. Dev., 2008, vol. 84, no. 8, pp. 539–547.

    Article  PubMed  Google Scholar 

  68. Lawlor, D.A., Davey-Smith, G., Mitchell, R., and Ebrahim, S, Temperature at birth, coronary heart disease, and insulin resistance: Cross sectional analyses of the British women’s heart and health study, Heart, 2004, vol. 90, no. 4, pp. 381–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Laron, Z., Lewy, H., Wilderman, I., Casu, A., Willis, J., Redondo, M.J., Libman, I., White, N., and Craig, M, Seasonality of month of birth of children and adolescents with type 1 diabetes mellitus in homogenous and heterogeneous populations, Isr. Med. Assoc. J., 2005, vol. 7, no. 6, pp. 381–384.

    PubMed  Google Scholar 

  70. Grover, V., Lipton, R.B., and Sclove, S.L., Seasonality of month of birth among African American children with diabetes mellitus in the City of Chicago, J. Pediatr. Endocrinol. Metab., 2004, vol. 17, no. 3, pp. 289–296.

    Article  PubMed  Google Scholar 

  71. Jongbloet, P.H., van Soestbergen, M., and van der Veen, E.A, Month-of-birth distribution of diabetics and ovopathy: A new aetiological view, Diabetes Res., 1988, vol. 9, no. 2, pp. 51–58.

    CAS  PubMed  Google Scholar 

  72. Vaiserman, A.M., Khalangot, M.D., Carstensen, B., Tronko, M.D., Kravchenko, V.I., Voitenko, V.P., Mechova, L.V., Koshel, N.M., and Grigoriev, P.E, Seasonality of birth in adult type 2 diabetic patients in three Ukrainian regions, Diabetologia, 2009, vol. 52, no. 12, pp. 2665–2667.

    Article  CAS  PubMed  Google Scholar 

  73. Vaiserman, A.M. and Khalangot, M.D, Similar seasonality of birth in type 1 and type 2 diabetes patients: A sign for common etiology?, Med. Hypotheses, 2008, vol. 71, no. 4, pp. 604–605.

    Article  PubMed  Google Scholar 

  74. Jensen, C.B., Zimmermann, E., Gamborg, M., Heitmann, B.L., Baker, J.L., Vaag, A., and Sorensen, T.I, No evidence of seasonality of birth in adult type 2 diabetes in Denmark, Diabetologia, 2015, vol. 58, no. 9, pp. 2045–2050.

    Article  CAS  PubMed  Google Scholar 

  75. Lockett, G.A., Soto-Ramírez, N., Ray, M.A., Everson, T.M., Xu, C.J., Patil, V.K., Terry, W., Kaushal, A., Rezwan, F.I., Ewart, S.L., et al., Association of season of birth with DNA methylation and allergic disease, Allergy, 2016, vol. 71, no. 9, pp. 1314–1324.

    Article  CAS  PubMed  Google Scholar 

  76. Dugué, P.A., Geurts, Y.M., Milne, R.L., Lockett, G.A., Zhang, H., Karmaus, W., and Holloway, J.W, Is there an association between season of birth and blood dna methylation in adulthood?, Allergy, 2016, vol. 71, no. 10, pp. 1501–1504.

    Article  PubMed  Google Scholar 

  77. Desiderio, A., Spinelli, R., Ciccarelli, M., Nigro, C., Miele, C., Beguinot, F., and Raciti, G.A., Epigenetics: Spotlight on type 2 diabetes and obesity, J. Endocrinol. Invest., 2016, vol. 39, no. 10, pp. 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  78. Sterns, J.D., Smith, C.B., Steele, J.R., Stevenson, K.L., and Gallicano, G.I, Epigenetics and type II diabetes mellitus: Underlying mechanisms of prenatal predisposition, Front Cell Dev. Biol., 2014

    Google Scholar 

  79. Gillman, M.W, Prenatal famine and developmental origins of type 2 diabetes, Lancet Diabetes Endocrinol., 2015, vol. 3, no. 10, pp. 751–752.

    Article  PubMed  Google Scholar 

  80. Vaiserman, A.M. and Pasyukova, E.G, Epigenetic drugs: A novel anti-aging strategy?, Front Genet., 2012, vol. 3, p. 224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vaiserman.

Additional information

Original Russian Text © O.G. Zabuga, A.M. Vaiserman, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2017, Vol. 72, No. 2, pp. 47–57.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabuga, O.G., Vaiserman, A.M. Malnutrition in early life and risk of type 2 diabetes: Theoretical framework and epidemiological evidence. Moscow Univ. Biol.Sci. Bull. 72, 37–46 (2017). https://doi.org/10.3103/S0096392517020067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392517020067

Keywords

Navigation