Skip to main content
Log in

Evaluating Parp1 domains as gossypol targets

  • Molecular Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Poly ADP-ribose Polymerase 1 (PARP1) is an important enzyme that is involved in DNA repair, replication, and transcription. Prospective anticancer drug gossypol inhibits human PARP1, but the mechanism of inhibition remains unknown. It has been shown previously that gossypol interacts with purified BRCA1 C-terminus (BRCT) domain in vitro. However, it remained unclear whether gossypol inhibits PARP1 through the BRCT domain in the context of full-length protein. Here, we report that the BRCT domain within the full-length PARP1 protein is not required for the inhibition of catalytic activity of PARP1 by gossypol. Our results, obtained using a series of PARP1 mutations and H4-dependent pathway of PARP1 activation, also show that none of the zinc fingers or other DNA binding domains of PARP1 are involved in the inhibition of the PARP1 catalytic activity by gossypol. Thus, the likely candidate target(s) for gossypol action are the other domains of PARP1, or the interdomain linkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ame, J.C., Spenlehauer, C., and De Murcia, G., The PARP superfamily, BioEssays, 2004, vol. 26, no. 8, pp. 882–893.

    Article  CAS  PubMed  Google Scholar 

  2. Ludwig, A., Behnke, B., Holtlund, J., and Hilz, H., Immunoquantitation and size determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes, J. Biol. Chem., 1988, vol. 263, no. 15, pp. 6993–6999.

    CAS  PubMed  Google Scholar 

  3. Yamanaka, H., Penning, C.A., Willis, E.H., Wasson, D.B., and Carson, D.A., Characterization of human poly(ADP-ribose) polymerase with autoantibodies, J. Biol. Chem., 1988, vol. 263, no. 8, pp. 3879–3883.

    CAS  PubMed  Google Scholar 

  4. Haince, J.F., McDonald, D., Rodrigue, A., Dery, U., Masson, J.Y., Hendzel, M.J., and Poirier, G.G., PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites, J. Biol. Chem., 2008, vol. 283, no. 2, pp. 1197–1208.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas, C. and Tulin, A.V., Poly-ADP-ribose polymerase: Machinery for nuclear processes, Mol. Aspects Med., 2013, vol. 34, no. 6, pp. 1124–1137.

    Article  CAS  PubMed  Google Scholar 

  6. Nishikimi, M., Ogasawara, K., Kameshita, I., Taniguchi, T., and Shizuta, Y., Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain, J. Biol. Chem., 1982, vol. 257, no. 11, pp. 6102–6105.

    CAS  PubMed  Google Scholar 

  7. Kameshita, I., Matsuda, Z., Taniguchi, T., and Shizuta, Y., Poly (ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain, J. Biol. Chem., 1984, vol. 259, no. 8, pp. 4770–4776.

    CAS  PubMed  Google Scholar 

  8. Gibson, B.A. and Kraus, W.L., New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs, Nat. Rev. Mol. Cell Biol., 2012, vol. 13, no. 7, pp. 411–424.

    Article  CAS  PubMed  Google Scholar 

  9. Langelier, M.F., Servent, K.M., Rogers, E.E., and Pascal, J.M., A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNAdependent enzyme activation, J. Biol. Chem., 2008, vol. 283, no. 7, pp. 4105–4114.

    Article  CAS  PubMed  Google Scholar 

  10. Tao, Z., Gao, P., Hoffman, D.W., and Liu, H.W., Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif, Biochemistry, 2008, vol. 47, no. 21, pp. 5804–5813.

    Article  CAS  PubMed  Google Scholar 

  11. Langelier, M., Ruhl, D.D., Planck, J.L., Kraus, W.L., and Pascal, J.M., The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction, J. Biol. Chem., vol. 285, no. 24, pp. 18877–18887.

  12. Langelier, M.F., Planck, J.L., Roy, S., and Pascal, J.M., Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1, Science, 2012, vol. 336, no. 6082, pp. 728–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bork, P., Hofman, K., Buche, P., Neuwal, A.F., Altschu, S.F., and Koonin, E.V., A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins, FASEB J., 1997, vol. 11, no. 1, pp. 68–76.

    CAS  PubMed  Google Scholar 

  14. Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia J., and De Murcia, G., XRCC1 is specifically associated with poly(ADPribose) polymerase and negatively regulates its activity following DNA damage, Mol. Cell. Biol., 1998, vol. 18, no. 6, pp. 3563–3571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masson, M., Murcia, J., Mattei, M.G., De Murcia, G., and Niedergang, C.P., Poly(ADPribose) polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9, Gene, 1997, vol. 190, no. 2, pp. 287–296.

    Article  CAS  PubMed  Google Scholar 

  16. Buki, K.G., Bauer, P.I., Hakam, A., and Kun, E., Identification of domains of poly(ADP-ribose) polymerase for protein binding and selfassociation, J. Biol. Chem., 1995, vol. 270, no. 7, pp. 3370–3377.

    Article  CAS  PubMed  Google Scholar 

  17. Nie, J., Sakamoto, S., Song, D., Qu, Z., Ota, K., and Taniguchi, T., Interaction of Oct-1 and automodification domain of poly(ADP-ribose) synthetase, FEBS Lett., 1998, vol. 424, nos. 1–2, pp. 27–32.

    Article  CAS  PubMed  Google Scholar 

  18. Griesenbeck, J., Ziegler, M., Tomilin, N., Schweiger, M., and Oei, S.L., Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1, FEBS Lett., 1999, vol. 443, no. 1, pp. 20–24.

    Article  CAS  PubMed  Google Scholar 

  19. Na, Z., Peng, B., Ng, S., Pan, S., Lee, J.S., Shen, H.M., and Yao, S.Q., A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain, Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 8, pp. 2515–2519.

    Article  CAS  Google Scholar 

  20. Malyuchenko, N.V., Kotova, E.Yu., Kulaeva, O.I., Kirpichnikov, M.P., and Studitskiy, V.M., PARP1 inhibitors: Antitumor drug design, Acta Naturae, 2015, vol. 7, no. 3, pp. 27–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilbert, N.E.O., Reilly, J.E., Chang, C.J., Lin, Y.C., and Brueggemeier, R.W., Antiproliferative activity of gossypol and gossypolone on human breast cancer cells, Life Sci., 1995, vol. 57, no. 1, pp. 61–67.

    Article  CAS  PubMed  Google Scholar 

  22. Langelier, M.F., Planck, J.L., Servent, K.M., and Pascal, J.M., Purification of human PARPI and PARPI domains from E. coli for structural and biochemical analysis, Methods Mol. Biol., 2011, vol. 780, pp. 209–226.

    Article  CAS  PubMed  Google Scholar 

  23. Kotova, E., Pinnola, A.D., and Tulin, A.V., Smallmolecule collection and high-throughput colorimetric assay to identify PARP-1 inhibitors, Methods Mol. Biol., 2011, vol. 780, pp. 491–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dawicki-McKenna, J.M., Langelier, M.F., DeNizio, J.E., Riccio, A.A., Cao, C.D., Karch, K.R., McCauley, M., Steffen, J.D., Black, B.E., and Pascal, J.M., PARP-1 activation requires local unfolding of an autoinhibitory domain, Mol. Cell, 2015, vol. 60, no. 5, pp. 755–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Maluchenko.

Additional information

Original Russian Text © S. Gross, E.Yu. Kotova, N.V. Maluchenko, J.M. Pascal, V.M. Studitsky, 2016, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2016, No. 4, pp. 61–65.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, S., Kotova, E.Y., Maluchenko, N.V. et al. Evaluating Parp1 domains as gossypol targets. Moscow Univ. Biol.Sci. Bull. 71, 235–239 (2016). https://doi.org/10.3103/S0096392516040106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392516040106

Keywords

Navigation