Skip to main content
Log in

Repair of chromatinized DNA

  • Molecular Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Endogenous and exogenous agents generate tens of thousands of lesions in the DNA of every cell daily. The maintenance of correct DNA structure by repair systems is crucial for genome functioning. Eukaryotic nuclear DNA is tightly packaged into chromatin, in which it should be successfully repaired. Historically, it is believed that histones are temporarily removed from the repaired DNA. However, numerous recent studies indicate that the chromatin structure affects the repair response, limiting its distribution, altering enzyme activity, and participating in the response choice and restoration of the repaired locus function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christmann, M., Tomicic, M.T., Roos, W.P., and Kaina, B., Mechanisms of human DNA repair: an update, Toxicology, 2003, vol. 193, nos. 1–2, pp. 3–34.

    Article  CAS  PubMed  Google Scholar 

  2. Dexheimer, T.S., DNA repair pathways and mechanisms, in DNA Repair of Cancer Stem Cells, Mathews, L.A., Cabarcas, S.M., and Hurt, E.M., Eds., Dordrecht: Springer Science+Business Media, 2013, pp. 19–32.

    Chapter  Google Scholar 

  3. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J., Crystal structure of the nucleosome core particle at 2.8 Å resolution, Nature, 1997, vol. 389, no. 6648, pp. 251–260.

    Article  CAS  PubMed  Google Scholar 

  4. Arents, G. and Moudrianakis, E.N., The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 24, pp. 11170–11174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Noll, M., Internal structure of the chromatin subunit, Nucleic Acids Res., 1974, vol. 1, no. 11, pp. 1573–1578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wigler, M.H. and Axel, R., Nucleosomes in metaphase chromosomes, Nucleic Acids Res., 1976, vol. 3, no. 6, pp. 1463–1471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hayes, J.J., Tullius, T.D., and Wolffe, A.P., The structure of DNA in a nucleosome, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, no. 19, pp. 7405–7409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Strand, J.M., Scheffler, K., Bjoras, M., and Eide, L., The distribution of DNA damage is defined by regionspecific susceptibility to DNA damage formation rather than repair differences, DNA Repair (Amst.), 2014, vol. 18, pp. 2014–18.

    Article  Google Scholar 

  9. Tijsterman, M., de Pril, R., Tasseron-de, Jong J.G., and Brouwer, J., Rna polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimmer repair in yeast, Mol. Cell. Biol., 1999, vol. 19, no. 1, pp. 934–940.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Odell, I.D., Wallace, S.S., and Pederson, D.S., Rules of engagement for base excision repair in chromatin, J. Cell Physiol., 2013, vol. 228, no. 2, pp. 258–266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nouspikel, T. and Hanawalt, P.C., DNA repair in terminally differentiated cells, DNA repair (Amst.), 2002, vol. 1, no. 1, pp. 59–75.

    Article  CAS  Google Scholar 

  12. Blainey, P.C., Luo, G., Kou, S.C., Mangel, W.F., Verdine, G.L., Bagchi, B., and Xie, X.S., Nonspecifically bound proteins spin while diffusing along DNA, Nat. Struct. Mol. Biol., 2009, vol. 16, no. 12, pp. 1224–1229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Odell, I.D., Newick, K., Heintz, N.H., Wallace, S.S., and Pederson, D.S., Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, neil1, DNA Repair (Amst.), 2010, vol. 9, no. 2, pp. 134–143.

    Article  CAS  Google Scholar 

  14. Odell, I.D., Barbour, J.E., Murphy, D.L., DellaMaria, J.A., Sweasy, J.B., Tomkinson, A.E., Wallace, S.S., and Pederson, D.S., Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair, Mol. Cell. Biol., 2011, vol. 31, no. 22, pp. 4623–4632.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hinz, J.M., Rodriguez, Y., and Smerdon, M.J., Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 10, pp. 4646–4651.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Murr, R., Loizou, J.I., Yang, Y.G., Cuenin, C., Li, H., Wang, Z.Q., and Herceg, Z., Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks, Nat. Cell Biol., 2006, vol. 8, no. 1, pp. 91–99.

    Article  CAS  PubMed  Google Scholar 

  17. Smerdon, M.J., Dna repair and the role of chromatin structure, Curr. Opin. Cell Biol., 1991, vol. 3, no. 3, pp. 422–428.

    Article  CAS  PubMed  Google Scholar 

  18. Gospodinov, A. and Herceg, Z., Shaping chromatin for repair, Mutat. Res., 2013, vol. 752, no. 1, pp. 45–60.

    Article  CAS  PubMed  Google Scholar 

  19. Mandemaker, I.K., Vermeulen, W., and Marteijn, J.A., Gearing up chromatin: a role for chromatin remodeling during the transcriptional restart upon DNA damage, Nucleus, 2014, vol. 5, no. 3, pp. 203–210.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bird, A.W., Yu, D.Y., Pray-Grant, M.G., Qiu, Q., Harmon, K.E., Megee, P.C., Grant, P.A., Smith, M.M., and Christman, M.F., Acetylation of histone H4 by Esal is required for DNA double-strand break repair, Nature, 2002, vol. 419, no. 6905, pp. 411–415.

    Article  CAS  PubMed  Google Scholar 

  21. Downs, J.A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S.J., Jackson, S.P., and Cote, J., Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites, Mol. Cell, 2004, vol. 16, no. 6, pp. 979–990.

    Article  CAS  PubMed  Google Scholar 

  22. Fousteri, M. and Mullenders, L.H., Transcriptioncoupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects, Cell Res., 2008, vol. 18, no. 1, pp. 73–84.

    Article  CAS  PubMed  Google Scholar 

  23. van Attikum, H. and Gasser, S.M., The histone code at DNA breaks: a guide to repair?, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, no. 10, pp. 757–765.

    Article  PubMed  Google Scholar 

  24. Soria, G., Polo, S.E., and Almouzni, G., Prime, repair, restore: the active role of chromatin in the DNA damage response, Mol. Cell, 2012, vol. 47, no. 4, pp. 497–510.

    Article  Google Scholar 

  25. Downey, M. and Durocher, D., Chromatin and DNA repair: the benefits of relaxation, Nat. Cell Biol., 2006, vol. 8, no. 1, pp. 9–10.

    Article  CAS  PubMed  Google Scholar 

  26. Khurana, S., Kruhlak, M.J., Kim, J., Tran, A.D., Liu, J., Nyswaner, K., Shi, L., Jailwala, P., Sung, M.H., Hakim, O., and Oberdoerffer, P., A macrohistone variant links dynamic chromatin compaction to BRCA1dependent genome maintenance, Cell Rep, 2014, vol. 8, no. 4, pp. 1049–1062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li, M.L., Yuan, G., and Greenberg, R.A., Chromatin yo-yo: expansion and condensation during DNA repair, Trends Cell Biol., 2014, vol. 24, no. 11, pp. 616–618.

    Article  CAS  PubMed  Google Scholar 

  28. Keogh, M.C., Kim, J.A., and Downey, M., A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery, Nature, 2006, vol. 439, no. 7075, pp. 497–501.

    Article  CAS  PubMed  Google Scholar 

  29. Kusch, T., Florens, L., Macdonald, W.H., Swanson, S.K., Glaser, R.L., Yates, J.R., Abmayr, S.M., Washburn, M.P., and Workman, J.L., Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions, Science, 2004, vol. 306, no. 5704, pp. 2084–2087.

    Article  CAS  PubMed  Google Scholar 

  30. Laugel, V., Cockayne syndrome: the expanding clinical and mutational spectrum, Mech. Ageing Dev., 2013, vol. 134, nos. 5–6, pp. 161–170.

  31. Adam, S., Polo, S.E., and Almouzni, G., Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA, Cell, 2013, vol. 155, no. 1, pp. 94–106.

    Article  CAS  PubMed  Google Scholar 

  32. Dinant, C., Ampatziadis-Michailidis, G., Lans, H., Tresini, M., Lagarou, A., Grosbart, M., Theil, A.F., van Cappellen, W.A., Kimura, H., Bartek, J., Fousteri, M., Houtsmuller, A.B., Vermeulen, W., and Varteijn, J.A., Enhanced chromatin dynamics by fact promotes transcriptional restart after UV-induced DNA damage, Mol. Cell, 2013, vol. 51, no. 4, pp. 469–479.

    Article  CAS  PubMed  Google Scholar 

  33. Oksenych, V., Zhovmer, A., Ziani, S., Mari, P.O., Eberova, J., Nardo, T., Stefanini, M., Giglia-Mari, G., Egly, J.M., and Coin, F., Histone methyltransferase DOTIL drives recovery of gene expression after a genotoxic attack, PLoS Genet., 2013, vol. 9, no. 7, p. e1003611.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Szenker, E., Lacoste, N., and Almouzni, G., A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus, Cell Rep., 2012, vol. 1, no. 6, pp. 730–740.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, M.D., Harreman, M., and Svejstrup, J.Q., Ubiquitylation and degradation of elongating RNA polymerase II: the last resort, Biochim. Biophys. Acta, 2013, vol. 1829, no. 1, pp. 151–157.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Gerasimova.

Additional information

Original Russian Text © N.S. Gerasimova, N.A. Pestov, O.I. Kulaeva, D.V. Nikitin, M.P. Kirpichnikov, V.M. Studitsky, 2015, published in Vestnik Moskovskogo Universiteta. Biologiya, 2015, No. 3, pp. 21–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimova, N.S., Pestov, N.A., Kulaeva, O.I. et al. Repair of chromatinized DNA. Moscow Univ. Biol.Sci. Bull. 70, 122–126 (2015). https://doi.org/10.3103/S0096392515030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392515030050

Keywords

Navigation