On the immortal hydra. Again

Abstract

The long history of ideas about the most famous “immortal” (non-aging) organism, freshwater hydra, is shortly reviewed. Over the years this polyp has attracted the attention of naturalists interested in problems of aging and longevity. In recent years, this interest has abruptly increased with the accent on fine mechanisms providing an almost complete lack of aging in hydra. It is emphasized that hydra immortality is based on indefinite self-renewal capacity of its stem cells. It is this fact that allows the polyp to continuously replace the “outworn” cells of the organism, keeping all its characteristics unchanged for an almost unlimited time. It is concluded that the applicability of the data obtained in gerontological experiments on hydra to human being is, unfortunately, very limited because normal functioning of many important organs and tissues in highly developed organisms is determined by the presence of postmitotic cells (neurons, cardiomyocytes, etc.), which actually cannot be replaced.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Jones, O.R., Scheuerlein, A., Salguero-Gómes, R., Camarda, C.G., Schaible, R., Casper, B.B., Dahlgren, J.P., Ehrlén, J., García, M.B., Menges, E.S., Quintana-Ascencio, P.F., Caswell, H., Baudisch, A., and Vaupel, J.W., Diversity of ageing across the tree of life, Nature, 2014, vol. 505, no. 7482, pp. 169–173.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. 2.

    Khokhlov, A.N., Does aging need an own program or the existing development program is more than enough?, Russ. J. Gen. Chem., 2010, vol. 80, no. 7, pp. 1507–1513.

    CAS  Article  Google Scholar 

  3. 3.

    Khokhlov, A.N., From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies, Biophysics, 2010, vol. 55, no. 5, pp. 859–864.

    Article  Google Scholar 

  4. 4.

    Khokhlov, A.N., Wei, L., Li, Y., and He, J., Teaching cytogerontology in Russia and China, Adv. Gerontol., 2012, vol. 25, no. 3, pp. 513–516.

    CAS  PubMed  Google Scholar 

  5. 5.

    Wei, L., Li, Y., He, J., and Khokhlov, A.N., Teaching the cell biology of aging at the Harbin Institute of Technology and Moscow State University, Moscow Univ. Biol. Sci. Bull., 2012, vol. 67, no. 1, pp. 13–16.

    Article  Google Scholar 

  6. 6.

    Khokhlov, A.N., Does aging need its own program or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors, Curr. Aging Sci., 2013, vol. 6, no. 1, pp. 14–20.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Khokhlov, A.N., Klebanov, A.A., Karmushakov, A.F., Shilovsky, G.A., Nasonov, M.M., and Morgunova, G.V., Testing of geroprotectors in experiments on cell cultures: choosing the correct model system, Moscow Univ. Biol. Sci. Bull., 2014, vol. 69, no. 1, pp. 10–14.

    Article  Google Scholar 

  8. 8.

    Trembley, A., Mémoires pour Servir à l’Histoire d’un Genre de Polypes d’Eau Douce, à Bras en Forme de Cornes, Leiden: Jean & Herman Verbeek, 1744.

  9. 9.

    Galliot, B., Hydra, a fruitful model system for 270 years, Int. J. Dev. Biol., 2012, vol. 56, no. 6–8, pp. 411–423.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Müller, W.A., Pattern formation in the immortal Hydra, Trends Genet., 1996, vol. 12, no. 3, pp. 91–96.

    PubMed  Article  Google Scholar 

  11. 11.

    Pearl, R. and Miner, J.R., Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms, Q. Rev. Biol., 1935, vol. 10, no. 1, pp. 60–79.

    Article  Google Scholar 

  12. 12.

    Berrill, N.J. and Liu, C.K., Germplasm, Weismann, and Hydrozoa, Q. Rev. Biol., 1948, vol. 23, no. 2, pp. 124–132.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Loomis, W.F. and Lenhoff, H.M., Growth and sexual differentiation of hydra in mass culture, J. Exp. Zool., 1956, vol. 132, no. 3, pp. 555–573.

    Article  Google Scholar 

  14. 14.

    Stiven, A.E., Concerning the survivorship curve of hydra, Ecology, 1962, vol. 43, no. 1, pp. 173–174.

    Article  Google Scholar 

  15. 15.

    Forrest, H., Immortality and Pearl’s survivorship curve for Hydra, Ecology, 1963, vol. 44, no. 3, pp. 609–610.

    Article  Google Scholar 

  16. 16.

    Brien, P., The fresh-water hydra, Am. Scientist, 1960, vol. 48, no. 4, p. 348A, 461–475.

    Google Scholar 

  17. 17.

    Brien, P., Blastogenese et gametogenese, in L’origine de la Lignée Germinale chez les Vertéebrés set chez Quelques Groupes d’Invertébrés. Séminaire 1962, Wolff, E., Ed., Paris: Hermann, 1964, pp. 19–76.

    Google Scholar 

  18. 18.

    Brien, P., Blastogenesis and morphogenesis, Adv. Morphog., 1968, vol. 7, pp. 151–203.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Khokhlov, A.N., Cell proliferation and aging, in Itogi Nauki i Tekhniki VINITI AN SSSR. Ser. Obshchie Problemy Fiziko-Khimicheskoi Biologii (Advances in Science and Technology, VINITI Akad. Sci. USSR, Series General Problems of Physicochemical Biology), Moscow: VINITI, 1988, vol. 9.

    Google Scholar 

  20. 20.

    Khokhlov, A.N., Decline in regeneration during aging: Appropriateness or stochastics?, Russ. J. Dev. Biol., 2013, vol. 44, no. 6, pp. 336–341.

    CAS  Article  Google Scholar 

  21. 21.

    Khokhlov, A.N., Impairment of regeneration in aging: appropriateness or stochastics?, Biogerontology, 2013, vol. 14, no. 6, pp. 703–708.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Martínez, D.E. and Bridge, D., Hydra, the everlasting embryo, confronts aging, Int. J. Dev. Biol, 2012, vol. 56, nos. 6–8, pp. 479–487.

    PubMed  Article  Google Scholar 

  23. 23.

    Martínez, D., Mortality patterns suggest lack of senescence in hydra, Exp. Gerontol., 1998, vol. 33, no. 3, pp. 217–225.

    PubMed  Article  Google Scholar 

  24. 24.

    Estep, P.W., Declining asexual reproduction is suggestive of senescence in hydra: comment on Martinez D. “Mortality patterns suggest lack of senescence in hydra”, Exp. Gerontol., 2010, vol. 45, no. 9, pp. 645–646.

    PubMed  Article  Google Scholar 

  25. 25.

    Boehm, A.-M., Khalturin, K., Anton-Erxleben, F., Hemmrich, G., Klostermeier, U.C., Lopez-Quintero, J.A., Oberg, H.H., Puchert, M., Rosenstiel, P., Wittlieb, J., and Bosch, T.C., FoxO is a critical regulator of stem cell maintenance in immortal Hydra, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 48, pp. 19697–19702.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Nebel, A. and Bosch, T.C.G., Evolution of human longevity: lessons from Hydra, Aging (Albany, New York), 2012, vol. 4, no. 11, pp. 730–731.

    CAS  Google Scholar 

  27. 27.

    Chapman, J.A., Kirkness, E.F., Simakov, O., et al., The dynamic genome of Hydra, Nature, 2010, vol. 464, no. 7288, pp. 592–596.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Yoshida, K., Fujisawa, T., Hwang, J.S., Ikeo, K., and Gojobori, T., Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging, Gene, 2006, vol. 385, pp. 64–70.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Watanabe, H., Hoang, V.T., Mättner, R., and Holstein, T.W., Immorality and the base of multicellular life: lessons from cnidarian stem cells, Semin. Cell Dev. Biol., 2009, vol. 20, no. 9, pp. 1114–1125.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Bosch, T.C.G., Stem cells in immortal hydra, in Stem Cells: From Hydra to Man, Netherlands: Springer, 2008, pp. 37–57.

    Google Scholar 

  31. 31.

    Bosch, T.C., Hydra and the evolution of stem cells, BioEssays, 2009, vol. 31, no. 4, pp. 478–486.

    PubMed  Article  Google Scholar 

  32. 32.

    Boehm, A.M., Rosenstiel, P., and Bosch, T.C., Stem cells and aging from a quasi-immortal point of view, BioEssays, 2013, vol. 35, no. 11, pp. 994–1003.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Cristofalo, V.J., Allen, R.G., Pignolo, R.J., Martin, B.G., and Beck, J.C., Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 18, pp. 10614–10619.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. 34.

    Khokhlov, A.N., What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)?, Adv. Gerontol., 2014, vol. 4, no. 2, pp. 150–154.

    Article  Google Scholar 

  35. 35.

    Khokhlov, A.N., Stationary cell cultures as a tool for gerontological studies, Ann. N.Y. Acad. Sci., 1992, vol. 663, pp. 475–476.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Khokhlov, A.N., Cell proliferation restriction: is it the primary cause of aging?, Ann. N.Y. Acad. Sci., 1998, vol. 854, p. 519.

    Article  Google Scholar 

  37. 37.

    Akimov, S.S. and Khokhlov, A.N., Study of “stationary phase aging” of cultured cells under various types of proliferation restriction, Ann. N.Y. Acad. Sci., 1998, vol. 854, p. 520.

    Article  Google Scholar 

  38. 38.

    Khokhlov, A.N., Results and perspectives of cytogerontologic studies in modern time, Tsitologiia, 2002, vol. 44, no. 12, pp. 1143–1148.

    CAS  PubMed  Google Scholar 

  39. 39.

    Khokhlov, A.N., Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models, Russ. J. Dev. Biol., 2003, vol. 34, no. 5, pp. 321–326.

    Article  Google Scholar 

  40. 40.

    Khokhlov, A.N., Evolution of the term “cellular senescence” and its impact on the current cytogerontological research, Moscow Univ. Biol. Sci. Bull., 2013, vol. 68, no. 4, pp. 158–161.

    Article  Google Scholar 

  41. 41.

    Khokhlov, A.N., Can cancer cells age? Stationary cell culture approach to the problem solution, in Visualizing of Senescent Cells in Vitro and in Vivo. Programme and Abstracts (Warsaw, Poland, December 15–16, 2012), Warsaw, 2012, pp. 48–49.

    Google Scholar 

  42. 42.

    Khokhlov, A.N., Evolutionary cytogerontology as a new branch of experimental gerontology, Age, 1994, vol. 17, no. 4, p. 159.

    Google Scholar 

  43. 43.

    Alinkina, E.S., Vorobyova, A.K., Misharina, T.A., Fatkullina, L.D., Burlakova, E.B., and Khokhlov, A.N., Cytogerontological studies of biological activity of oregano essential oil, Moscow Univ. Biol. Sci. Bull., 2012, vol. 67, no. 2, pp. 52–57.

    Article  Google Scholar 

  44. 44.

    Yablonskaya, O.I., Ryndina, T.S., Voeikov, V.L., and Khokhlov, A.N., A paradoxical effect of hydrated C60-fullerene at an ultralow concentration on the viability and aging of cultured Chinese hamster cells, Moscow Univ. Biol. Sci. Bull., 2013, vol. 68, no. 2, pp. 63–68.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Khokhlov.

Additional information

Original Russian Text © A.N. Khokhlov, 2014, published in Vestnik Moskovskogo Universiteta. Biologiya, 2014, No. 4, pp. 15–19.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, A.N. On the immortal hydra. Again. Moscow Univ. Biol.Sci. Bull. 69, 153–157 (2014). https://doi.org/10.3103/S0096392514040063

Download citation

Keywords

  • freshwater hydra
  • aging
  • life span
  • cell proliferation
  • evolution
  • stem cells