Skip to main content

Subcellular aging markers of retinal pigment epithelium in Japanese quail Coturnix japonica

Abstract

Age-related changes of retinal pigment epithelium of the Japanese quail, which at present is a promising experimental model of accelerated aging, were studied by electron microscopy using morphometric analysis. It was established that, along with accumulation of lipofuscin granules and ultrastructural changes of the Bruch’s membrane, changes in the shape of nuclei and mitochondria (increase in the portion of ring-shaped and dumbbell-like mitochondria), decrease in the amount of myeloid bodies, and disorganization of basal infoldings are also aging markers of retinal pigment epithelium.

This is a preview of subscription content, access via your institution.

References

  1. Trofimova, S.V. and Khavinson, V.Kh., The retina and aging, Usp. Gerontol., 2002, no. 9, pp. 79–82.

    Google Scholar 

  2. Ehrlich, R., Harris, A., Kheradiya, N.S., Winston, D.M., Ciulla, T.A., and Wirostko, B., Age-Related macular degeneration and the aging eye, Clin. Interv. Aging, 2008, vol. 3, no. 3, pp. 473–482.

    PubMed Central  PubMed  Google Scholar 

  3. Fine, S.L., Berger, J.W., Maguire, M.G., and Ho, A.C., Age-related macular degeneration, N. Engl. J. Med., 2000, vol. 342, no. 7, pp. 483–492.

    CAS  PubMed  Article  Google Scholar 

  4. Nowak, J.Z., Age-related macular degeneration (AMD): pathogenesis and therapy, Pharmacol. Rep., 2006, vol. 58, no. 3, pp. 353–363.

    CAS  PubMed  Google Scholar 

  5. Zak, P.P., Zykova, A.V., Trofimova, N.N., Eskina, E.N., and Ostrovskii, M.A., An experimental model of accelerated aging of the retina: the Japanese quail Coturnix japonica, Sens. Sist., 2012, vol. 26, no. 1, pp. 3–10.

    Google Scholar 

  6. Khachik, F., Moura, F.F., Zhao, D.Y., Aebischer, C.P., and Bernstein, P.S., Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models, Invest. Ophthalmol. Vis. Sci., 2002, vol. 43, no. 11, pp. 3383–3392.

    PubMed  Google Scholar 

  7. Feeney-Burns, L., Hilderbrand, E.S., and Eldridqe, S., Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells, Invest. Ophthalmol. Vis. Sci., 1984, vol. 25, no. 2, pp. 195–200.

    CAS  PubMed  Google Scholar 

  8. Fite, K.V. and Bengston, L., Aging and sex-related changes in the outer retina of Japanese quail, Curr. Eye Res., 1989, vol. 8, no. 10, pp. 1039–1048.

    CAS  PubMed  Article  Google Scholar 

  9. Avtandilov, G.G., Vvedenie v kolichestvennuyu patologicheskuyu morfologiyu (Introduction to Quantitative Pathomorphology), Moscow: Meditsina, 1980.

    Google Scholar 

  10. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell Biol., 1992, vol. 119, no. 3, pp. 493–501.

    CAS  PubMed  Article  Google Scholar 

  11. Kim, I.T. and Kwak, J.S., Degradation of phagosomes and diurnal changes of lysosomes in rattit retinal pigment epithelium, Korean J. Ophthalmol., 1996, vol. 10, no. 2, pp. 82–91.

    CAS  PubMed  Google Scholar 

  12. Julien, S. and Schraermeyer, U., Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys, Neurobiol. Aging, 2012, pp. 1–8.

    Google Scholar 

  13. Yakovleva, M.A., Sakina, N.L., Kanonikhin, A.S., Fel’dman, T.B., and Nikolaev, E.E., Detection and study of the products of photooxidation of N-retinylidene-N-retinylethanolamine (A2E), the fluorophore of lipofuscin granules from retinal pigment epithelium of human donor eyes, Dokl. Biochem. Biophys., 2006, vol. 409, pp. 223–226.

    CAS  PubMed  Article  Google Scholar 

  14. Kennedy, C.J., Rakoczy, P.E., and Constable, I.J., Lipofuscin of the retinal pigment epithelium: a review, Eye, 1995, no. 9, pp. 763–771.

    Google Scholar 

  15. Lushnikov, E.F. and Abrosimov, F.Yu., Gibel’ kletki (apoptoz) (Programmed Cell Death (Apoptosis)), Moscow: Meditsina, 2001.

    Google Scholar 

  16. Lauber, J.K., Retinal pigment epithelium: ring mitochondria and lesions induced by continuous light, Curr. Eye Res., 1982–1983, vol. 2, no. 12, pp. 855–862.

    PubMed  Article  Google Scholar 

  17. Liang, H., Crewther, S.G., and Crewther, D.P., A model for the formation of ring mitochondria in retinal pigment epithelium, Yan Ke Xue Bao, 1995, vol. 11, no. 1, pp. 9–15.

    CAS  PubMed  Google Scholar 

  18. Almsherqi, Z., McLachlan, C.S., Tay, S.K., and Deng, Y., Chronic phenobarbital-induced mitochondrial pleomorphism in the rat liver, Toxicol. Pathol., 2007, vol. 35, no. 6, pp. 833–835.

    PubMed  Article  Google Scholar 

  19. Ostrovskii, M.A., Dontsov, A.E., Sakina, N.L., Boulton, M., and Jarvis-Evans, J., Ability of lipofuscin granules of the retinal pigment epithelium of the human eye to photosensitized lipid peroxidation under the action of visible light, Sens. Sist., 1992, vol. 6, no. 3, pp. 51–54.

    Google Scholar 

  20. Ostrovskii, M.A., Photobiological paradox of vision, Usp. Biol. Khim., 2005, vol. 45, pp. 173–204.

    Google Scholar 

  21. Boulton, M., Dontsov, A., Ostrovsky, M., JarvisEvans, J., and Svistunenko, D., Lipofuscin is a photoinducible free radical generator, J. Photochem. Photobiol., 1993, vol. 19, pp. 201–204.

    CAS  Article  Google Scholar 

  22. Dontsov, A.E., Glickman, R.D., and Ostrovsky, M.A., Retinal pigment and epithelium pigment granules stimulate the photo-oxidation of unsaturated fatty acids, Free Radic. Biol. Med., 1999, vol. 26, nos. 11–12, pp. 1436–1446.

    CAS  PubMed  Article  Google Scholar 

  23. Wassel, J., Davis, S., Bardesley, W., and Boulton, M., The photoreactivity of the retinal age pigment lipofuscin, J. Biol. Chem., 1999, vol. 274, pp. 23824–23832.

    Google Scholar 

  24. Abran, D. and Dickson, D.H., Biogenesis of myeloid bodies in regenerating newt (Notophthalmus viridescens) retinal pigment epithelium, Cell Tissue Res., 1992, vol. 268, no. 3, pp. 531–538.

    CAS  PubMed  Article  Google Scholar 

  25. Dickson, D.H. and Harvey, H.L., Myeloid body development in the chick retinal pigment epithelium, Curr. Eye Res., 1992, vol. 11, no. 2, pp. 147–152.

    CAS  PubMed  Article  Google Scholar 

  26. Fite, K.V., Bengston, L., and Cousins, F., Drusen-like deposits in the outer retina of Japanese quail, Exp. Eye Res., 1994, vol. 59, no. 4, pp. 417–424.

    CAS  PubMed  Article  Google Scholar 

  27. Bonilha, V.L., Age and disease-related structural changes in the retinal pigment epithelium, Clin. Ophthalmol., 2008, vol. 2, pp. 413–424.

    PubMed Central  PubMed  Article  Google Scholar 

  28. Wang, L., Clark, M.E., Crossman, D.K., Kojima, K., Messinger, J.D., Mobley, J.A., and Curcio, C.A., Abundant lipid and protein components of drusen, PLoS One, 2010, vol. 5, no. 4, pp. 1–12.

    Google Scholar 

  29. Johnson, P.T., Lewis, G.P., Talada, K.C., Brown, M.N., Kappel, P.J., and Johnson, L.V., Drusen-associated degeneration in the retina, Invest Ophthalmol. Vis. Sci., 2003, vol. 44, no. 10, pp. 4481–4488.

    PubMed  Article  Google Scholar 

  30. Birch, D.G. and Liang, F.Q., Age-related macular degeneration: a target for nanotechnology derived medicines, Int. J. Nanomed., 2007, vol. 2, no. 1, pp. 65–77.

    CAS  Article  Google Scholar 

  31. Johnson, L.V., Forest, D.L., Banna, C.D., Radeke, C.M., Maloney, M.A., Hu, J., Spencer, C.N., Walker, A.M., Tsie, M.S., Bok, D., Radeke, M.J., and Anderson, D.H., Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 45, pp. 18277–18282.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Seryozhnikova.

Additional information

Original Russian Text © N.B. Seryozhnikova, P.P. Zak, L.S. Pogodina, N.N. Trofimova, T.V. Lipina, M.A. Ostrovsky, 2013, published in Vestnik Moskovskogo Universiteta. Biologiya, 2013, No. 3, pp. 9–16.

About this article

Cite this article

Seryozhnikova, N.B., Zak, P.P., Pogodina, L.S. et al. Subcellular aging markers of retinal pigment epithelium in Japanese quail Coturnix japonica . Moscow Univ. Biol.Sci. Bull. 68, 162–168 (2013). https://doi.org/10.3103/S0096392513040093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392513040093

Keywords

  • Japanese quail
  • retinal pigment epithelium
  • lipofuscin
  • mitochondria
  • aging