Trofimova, S.V. and Khavinson, V.Kh., The retina and aging, Usp. Gerontol., 2002, no. 9, pp. 79–82.
Google Scholar
Ehrlich, R., Harris, A., Kheradiya, N.S., Winston, D.M., Ciulla, T.A., and Wirostko, B., Age-Related macular degeneration and the aging eye, Clin. Interv. Aging, 2008, vol. 3, no. 3, pp. 473–482.
PubMed Central
PubMed
Google Scholar
Fine, S.L., Berger, J.W., Maguire, M.G., and Ho, A.C., Age-related macular degeneration, N. Engl. J. Med., 2000, vol. 342, no. 7, pp. 483–492.
CAS
PubMed
Article
Google Scholar
Nowak, J.Z., Age-related macular degeneration (AMD): pathogenesis and therapy, Pharmacol. Rep., 2006, vol. 58, no. 3, pp. 353–363.
CAS
PubMed
Google Scholar
Zak, P.P., Zykova, A.V., Trofimova, N.N., Eskina, E.N., and Ostrovskii, M.A., An experimental model of accelerated aging of the retina: the Japanese quail Coturnix japonica, Sens. Sist., 2012, vol. 26, no. 1, pp. 3–10.
Google Scholar
Khachik, F., Moura, F.F., Zhao, D.Y., Aebischer, C.P., and Bernstein, P.S., Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models, Invest. Ophthalmol. Vis. Sci., 2002, vol. 43, no. 11, pp. 3383–3392.
PubMed
Google Scholar
Feeney-Burns, L., Hilderbrand, E.S., and Eldridqe, S., Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells, Invest. Ophthalmol. Vis. Sci., 1984, vol. 25, no. 2, pp. 195–200.
CAS
PubMed
Google Scholar
Fite, K.V. and Bengston, L., Aging and sex-related changes in the outer retina of Japanese quail, Curr. Eye Res., 1989, vol. 8, no. 10, pp. 1039–1048.
CAS
PubMed
Article
Google Scholar
Avtandilov, G.G., Vvedenie v kolichestvennuyu patologicheskuyu morfologiyu (Introduction to Quantitative Pathomorphology), Moscow: Meditsina, 1980.
Google Scholar
Gavrieli, Y., Sherman, Y., and Ben-Sasson, S., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell Biol., 1992, vol. 119, no. 3, pp. 493–501.
CAS
PubMed
Article
Google Scholar
Kim, I.T. and Kwak, J.S., Degradation of phagosomes and diurnal changes of lysosomes in rattit retinal pigment epithelium, Korean J. Ophthalmol., 1996, vol. 10, no. 2, pp. 82–91.
CAS
PubMed
Google Scholar
Julien, S. and Schraermeyer, U., Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys, Neurobiol. Aging, 2012, pp. 1–8.
Google Scholar
Yakovleva, M.A., Sakina, N.L., Kanonikhin, A.S., Fel’dman, T.B., and Nikolaev, E.E., Detection and study of the products of photooxidation of N-retinylidene-N-retinylethanolamine (A2E), the fluorophore of lipofuscin granules from retinal pigment epithelium of human donor eyes, Dokl. Biochem. Biophys., 2006, vol. 409, pp. 223–226.
CAS
PubMed
Article
Google Scholar
Kennedy, C.J., Rakoczy, P.E., and Constable, I.J., Lipofuscin of the retinal pigment epithelium: a review, Eye, 1995, no. 9, pp. 763–771.
Google Scholar
Lushnikov, E.F. and Abrosimov, F.Yu., Gibel’ kletki (apoptoz) (Programmed Cell Death (Apoptosis)), Moscow: Meditsina, 2001.
Google Scholar
Lauber, J.K., Retinal pigment epithelium: ring mitochondria and lesions induced by continuous light, Curr. Eye Res., 1982–1983, vol. 2, no. 12, pp. 855–862.
PubMed
Article
Google Scholar
Liang, H., Crewther, S.G., and Crewther, D.P., A model for the formation of ring mitochondria in retinal pigment epithelium, Yan Ke Xue Bao, 1995, vol. 11, no. 1, pp. 9–15.
CAS
PubMed
Google Scholar
Almsherqi, Z., McLachlan, C.S., Tay, S.K., and Deng, Y., Chronic phenobarbital-induced mitochondrial pleomorphism in the rat liver, Toxicol. Pathol., 2007, vol. 35, no. 6, pp. 833–835.
PubMed
Article
Google Scholar
Ostrovskii, M.A., Dontsov, A.E., Sakina, N.L., Boulton, M., and Jarvis-Evans, J., Ability of lipofuscin granules of the retinal pigment epithelium of the human eye to photosensitized lipid peroxidation under the action of visible light, Sens. Sist., 1992, vol. 6, no. 3, pp. 51–54.
Google Scholar
Ostrovskii, M.A., Photobiological paradox of vision, Usp. Biol. Khim., 2005, vol. 45, pp. 173–204.
Google Scholar
Boulton, M., Dontsov, A., Ostrovsky, M., JarvisEvans, J., and Svistunenko, D., Lipofuscin is a photoinducible free radical generator, J. Photochem. Photobiol., 1993, vol. 19, pp. 201–204.
CAS
Article
Google Scholar
Dontsov, A.E., Glickman, R.D., and Ostrovsky, M.A., Retinal pigment and epithelium pigment granules stimulate the photo-oxidation of unsaturated fatty acids, Free Radic. Biol. Med., 1999, vol. 26, nos. 11–12, pp. 1436–1446.
CAS
PubMed
Article
Google Scholar
Wassel, J., Davis, S., Bardesley, W., and Boulton, M., The photoreactivity of the retinal age pigment lipofuscin, J. Biol. Chem., 1999, vol. 274, pp. 23824–23832.
Google Scholar
Abran, D. and Dickson, D.H., Biogenesis of myeloid bodies in regenerating newt (Notophthalmus viridescens) retinal pigment epithelium, Cell Tissue Res., 1992, vol. 268, no. 3, pp. 531–538.
CAS
PubMed
Article
Google Scholar
Dickson, D.H. and Harvey, H.L., Myeloid body development in the chick retinal pigment epithelium, Curr. Eye Res., 1992, vol. 11, no. 2, pp. 147–152.
CAS
PubMed
Article
Google Scholar
Fite, K.V., Bengston, L., and Cousins, F., Drusen-like deposits in the outer retina of Japanese quail, Exp. Eye Res., 1994, vol. 59, no. 4, pp. 417–424.
CAS
PubMed
Article
Google Scholar
Bonilha, V.L., Age and disease-related structural changes in the retinal pigment epithelium, Clin. Ophthalmol., 2008, vol. 2, pp. 413–424.
PubMed Central
PubMed
Article
Google Scholar
Wang, L., Clark, M.E., Crossman, D.K., Kojima, K., Messinger, J.D., Mobley, J.A., and Curcio, C.A., Abundant lipid and protein components of drusen, PLoS One, 2010, vol. 5, no. 4, pp. 1–12.
Google Scholar
Johnson, P.T., Lewis, G.P., Talada, K.C., Brown, M.N., Kappel, P.J., and Johnson, L.V., Drusen-associated degeneration in the retina, Invest Ophthalmol. Vis. Sci., 2003, vol. 44, no. 10, pp. 4481–4488.
PubMed
Article
Google Scholar
Birch, D.G. and Liang, F.Q., Age-related macular degeneration: a target for nanotechnology derived medicines, Int. J. Nanomed., 2007, vol. 2, no. 1, pp. 65–77.
CAS
Article
Google Scholar
Johnson, L.V., Forest, D.L., Banna, C.D., Radeke, C.M., Maloney, M.A., Hu, J., Spencer, C.N., Walker, A.M., Tsie, M.S., Bok, D., Radeke, M.J., and Anderson, D.H., Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 45, pp. 18277–18282.
CAS
PubMed Central
PubMed
Article
Google Scholar