Skip to main content
Log in

Photoheterotrophic callus culture Ficus elastica. The formation of polyisoprene synthesis

  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The ability to synthesize polyisoprene was studied for lines of Ficus elastica photoheterotrophic callus culture which results from the selection and prolonged cultivation of the culture in light in a medium containing 1% sucrose, 0.5 and 0.05 mg/l BAP or in the absence of the hormone. The results of microscopy study show that F. elastica lines are able to synthesize polyisoprene typical of intact plants. The substantial accumulation of polyisoprene was observed for the culture grown in the BAP-free media. Moreover, for some lines considered, tracheid structures were shown to be present in tissues. The formation of tracheid structures correlated directly with polyisoprene synthesis. We conclude that varying BAP content in the cultivation medium and selection allow the preparation of a culture exhibiting a certain functional specificity. Under optimal cultivation conditions, the culture develops toward the intensification of polyisoprene synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, B.L, Polyisoprene in Encyclopedia of Plant Physiology New Series. Vol. 8. Secondary Plant Products, Bell, E.A. and Charlwood, B.V., Eds., Berlin, 1980.

  • Backhaus, R.A., Rubber Formation in Plants—a Mini-Review, Isr. J. Bot, 1985, nos. 2–4, pp. 283–293.

  • Bondarev, N.I., Suchanova, M.A., Reshetnyak, O.V., and Nosov, A.M., Steviol Glycoside Content in Different Organs of Stevia rebaudiana and Its Dynamics During Ontogeny, Biol. Plant., 2004, vol. 47, no. 2, pp. 261–264.

    Article  Google Scholar 

  • Butenko, R.G., Eksperimental’nyi morfogenez i differentsiatsiya v kul’ture rastenii, 35-e Timiryazevskie chteniya (Experimental Morphogenesis and Differentiation in Cultures of Plant Cells), Moscow, 1975 [in Russian].

  • Butenko, R.G., Biologiya kletok vysshikh rastenii in vitro i biotekhnologiya na ikh osnove (Cellular Biology and Biotechnology of Higher Plants in Vitro), Moscow, 1999 [in Russian].

  • Chappell, J., The Biochemistry and Molecular Biology of Isoprenoid Metabolism, Plant Physiol., 1995, vol. 107, no. 1, pp. 1–6.

    PubMed  CAS  Google Scholar 

  • Danilova, N.F. and Kozubov, N.G., Atlas ul’trastruktury rastitel’nykh tkanei (Plant Tissue Ultrastructure Atlas), Petrozavodsk, 1980 [in Russian].

  • Estevez, J.M., Cantero, A., Reindl, A., Reichler, S., and Leon, P., 1-Geoxy-D-Xylulose-5-Phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants, J. Biol. Chem., 2001, vol. 276, no. 25, pp. 22 901–22 909.

    Article  CAS  Google Scholar 

  • Furst, G.G., Metody anatomo-gistokhimicheskogo issledovaniya rastitel’nykh tkanei (Methods of Anatomic and Histochemical Examination of Plant Tissues), Moscow, 1979 [in Russian].

  • Gusev, M.V., Markarova, E.N., Kol’chugina, I.B., Kolganova, T.V., and Veselovskii, V.A., Chlorophil content, photosynthesis, and prolonged afterglow of a photoheterotrophic cultures of polyisoprene-producing plant tissues, Fiziol. Biokhim. Kulturn. Rast., 1989, vol. 21, no. 4, pp. 321–328 [in Russian].

    CAS  Google Scholar 

  • Heintze, A., Gorlach, J., Leuschner, C., Hoppe, P., Hagelstein, P., Schulze-Siebert, D., and Schultz, G., Plastidic Isoprenoid Synthesis During Chloroplast Development. Change from Metabolic Autonomy to a Division-of-Labor Stage, Plant. Physiol., 1990, vol. 93, no. 3, pp. 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  • Kol’chugina, I.B., Stanovlenie fototrofnosti v kallusnoi kul’ture Ficus elastica pri izmenenii vneshnikh faktorov kul’tivirovaniya: Avtoref. dis. kand. biol. nauk (Establishing Photoheterotrophic Callus Culture of Ficus elastica by Variation of External Growth Factors), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2002 [in Russian].

  • Kol’chugina, I.B. and Markarova, E.N., Protoplast Isolation from Callus Tissue Cultures of Ficus elastica of Varying Cytokin Activity. Cytokin Role in Protoplast Formation, Vestn. Mosk. Un-Ta, Ser. Biologiya., 2007, no. 3, pp. 9–12.

  • Kol’chugina, I.B., Markarova, E.N., and Gusev, M.V., Cytokin Content in Callus Tissue of Various Strains of Ficus elastica Grown in Media Differing by 6-Benzylaminopurine Supply, Vestn. Mosk. Un-Ta, Ser. Biologiya., 1996, no. 2, pp. 35–39.

  • Kurz, W.G.W., Biological and Environmental Factors of Product Synthesis, Accumulation and Biotransformation by Plant Cell Cultures, N.Z.J. Technol, 1986, vol. 2, no. 2, pp. 77–81.

    CAS  Google Scholar 

  • Loreto, F. and Sharkey, T.D., A Gas-Exchange Study of Photosynthesis and Isoprene Emission in Quercus rubra L, Planta, 1990, vol. 182, no. 4, pp. 523–531.

    Article  CAS  Google Scholar 

  • Markarova, E.N. and Kol’chugina, I.B., Ultrastructure of Chloroplasts in Callus Cultures of Ficus elastica Differing by Cytokin Activity, Fiziol. Rast, 1998, vol. 45, no. 5, pp. 659–663 [in Russian].

    Google Scholar 

  • Markarova, E.N. and Kol’chugina, I.B., Age-Related Changes in Photosynthesis and Respiration during the Cultivation Cycle in Strains of Callus Cultures of Ficus elastica with Varying Cytokin Activity, Vest. Mosk. Un-Ta, Ser. Biologiya., 2003, no. 1, pp. 12–14.

  • Murashige, T. and Skoog, F.A., Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  CAS  Google Scholar 

  • Markarova, E.N., Ladygina, M.E., Bukhova, I.F., and Rodova, N.A., Obrazovanie poliizoprena v kul’ture tkani kauchukonosov, Tez. dokl. IV Vsesoyuz. konf. “Kul’tura kletok rastenii i biotekhnologiya” (Polyisopren Formation in Tissues of Polyisopren-Producing Plants), Proc. IV All-Union Conf. on Plant Cell Cultures and Biotechnology, Chisinau, 1983 [in Russian].

  • Nosov, A.M., Regulyatsiya sinteza vtorichnykh soedinenii v kul’ture kletok rastenii, Biologiya kul’tiviruemykh kletok i biotekhnologiya rastenii (Regulation of Secondary Metabolite Synthesis in Plant Culture Cells in Biology of cultivated cells and biotechnology of plants), Moscow 1991 [in Russian].

  • Nosov, A.M., Functions of Plant Secondary Metabolites in vitro and in vivo, Fiziol. Rast, 1994, vol. 41, no. 6, pp. 873–878.

    CAS  Google Scholar 

  • Nosov, A.M., Culture of Higher Plant Cells: A Unique System, Model, Tool, Fiziol. Rast, 1999, vol. 46, pp. 837–844.

    Google Scholar 

  • Prokof’ev, A.A., Lokalizatsiya, obrazovanie i sostoyanie kauchuka v rasteniyakh (Localization, Formation, and State of Polyisopren in Plants), Moscow, 1948 [in Russian].

  • Sanadze, G.A., Biogenic isoprene, Fiziol. Rast, 2004, vol. 51, pp. 810–825.

    Google Scholar 

  • Schulze-Siebert, D. and Schultz, G., β-Carotene Synthesis in Isolated Spinach Chloroplasts. Its Light Linkage to Photosynthetic Carbon Metabolism, Plant Physiol., 1987, vol. 84, no. 4, pp. 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  • Schwender, J., Seemann, M., Lichtenthaler, H.K., and Rohmer, M., Biosynthesis of Isoprenoids (Carotenoids, Sterols, Prenyl Side-Chains of Chlorophylls and Plastoquinone) Via a Novel Pyruvate / Glyceraldehyde-3-Phosphate Non-Mevalonate Pathway in the Green Alga Scenedesmus obliquus, Biochem. J., 1996, vol. 316, no. 1, pp. 73–80.

    PubMed  CAS  Google Scholar 

  • Suri, S.S. and Ramawat, K.G., In Vitro Hormonal Regulation of Laticifer Differentiation in Calotropis procera, Ann. Bot., 1995, vol. 75, no. 5, pp. 477–480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Kol’chugina.

Additional information

Original Russian Text © I.B. Kol’chugina, E.N. Markarova, 2009, published in Vestnik Moskovskogo Universiteta. Biologiya, 2009, No. 1, pp. 31–35.

To prepare Javel water 20 g of sodium hypochloride was dissolved in 100 ml of distilled water and decanted; 15 g of potassium or sodium carbonate was dissolved in 10 ml of distilled water. The two solutions were mixed together and left for four days in a dark place. The mixture was filtrated through a double layer of linen using Buchner funnel and then, through a filter glass number three.

About this article

Cite this article

Kol’chugina, I.B., Markarova, E.N. Photoheterotrophic callus culture Ficus elastica. The formation of polyisoprene synthesis. Moscow Univ. Biol.Sci. Bull. 64, 28–31 (2009). https://doi.org/10.3103/S0096392509010064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392509010064

Keywords

Navigation