Skip to main content
Log in

Genome-Wide Identification of Genes Involved in Raffinose Family Oligosaccharides Metabolism in Pea (Pisum sativum L.)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The pea is an important cool-season pulse crop cultivated for animal and human consumption. However, the presence of “flatulence-causing factors” hinders its consumption and acceptance worldwide. The raffinose family oligosaccharides (RFOs) have been identified as the principal “flatulence causing factors”. Hence, reducing RFO level is the major goal to promote pea consumption and acceptance worldwide. However, very little is known about the genes involved in RFO metabolism at the genome-wide scale in pea. In the present study, genes for five key enzymes (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase_Acid/Alkaline and beta-fructofuranosidase) involved in RFO metabolism pathway were identified at the genome-wide scale in pea. A total of two galactinol synthase, two raffinose synthase, one stachyose synthase, six alpha-galactosidase_Alkaline and three alpha-galactosidase_Acid and ten beta-fructofuranosidase genes were identified in the pea genome. Phylogenetic relationships analysis, exon/intron structure as well as conserved domain within each enzyme family and their chromosomal location were also determined to establish their relationship with the known proteins. In silico anlaysis showed that pea RFO genes contain 26 microsatellite loci. Taken together, this study provides useful candidate genes for improving the nutritional quality of pea through genetic engineering approaches as well as microsatellite loci for the development of SSR markers for the introgression of low RFO trait through marker assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Angelovici, R., Galili, G., Fernie, A.R., and Fait, A., Seed desiccation: a bridge between maturation and germination, Trends Plant Sci., 2010, vol. 15, pp. 211–218.

    Article  CAS  PubMed  Google Scholar 

  2. Asif, M.I., Wani, S.A., Lone, A.A., Dar, Z.A., and Nehvi, F.A., Breeding for quality traits in grain legumes, in Conventional and Non-Conventional Interventions in Crop Improvement, Eds., Malik, C.P., Sanghera, G., and Wani, S.H., New Delhi: MD, 2013.

    Google Scholar 

  3. Blöchl, A., Peterbauer, T., and Richter, A., Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds, J. Plant Physiol., 2007, vol. 164, pp. 1093–1096.

    Article  PubMed  Google Scholar 

  4. Blöchl, A., Peterbauer, T., Hofmann, J., and Richter, A., Enzymatic breakdown of raffinose oligosaccharides in pea seeds, Planta, 2008, vol. 228, pp. 99–110.

    Article  PubMed  Google Scholar 

  5. Elango, D., Rajendran, K., Van der Laan, L., et al., Raffinose family oligosaccharides: friend or foe for human and plant health, Front. Plant Sci., 2022, vol. 13, p. 829118.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Falavigna, V.D.S., et al., Evolutionary diversification of galactinol synthases in Rosaceae: Adaptive roles of galactinol and raffinose during apple bud dormancy, J. Exp. Bot., 2018, vol. 69, pp. 1247–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filiz, E., Ozyigit, I.I., and Vatansever, R., Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon, Comput. Biol. Chem., 2015, vol. 58, pp. 149–157.

    Article  CAS  PubMed  Google Scholar 

  8. Horbowicz M. and Obendorf R.L., Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols—review and survey, Seed Sci. Res., 1994, vol. 4, pp. 385–405.

    Article  CAS  Google Scholar 

  9. Jones, D.A., DuPont, M.S., Ambrose, M.J., Frias, J., and Hedley, C.L., The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds, Seed Sci. Res., 1999, vol. 9, pp. 305–310.

    Article  CAS  Google Scholar 

  10. Kreplak, J., Madoui, M.A., Cápal, P., et al., A reference genome for pea provides insight into legume genome evolution, Nat. Genet., 2019, vol. 51, pp. 1411–1422.

    Article  CAS  PubMed  Google Scholar 

  11. Lahuta, L.B., Goszczynska, J., and Horbowicz, M., Seed α-D-galactosides of selected Vicia species and enzymes involved in their biosynthesis, Acta Biol. Cracov., Ser. Bot., 2010, vol. 52, pp. 27–35.

    Google Scholar 

  12. Le, H., Nguyen, N.H., Ta, D.T., Le, T.N.T., Bui, T.P., Le, N.T., et al., CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds, Front. Plant Sci., 2020, vol. 11, p. 612942.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, R., Yuan, S., He, Y., Fan, J., Zhou, Y., Qiu, T., Lin, X., Yao, Y., Liu, J., Fu, S., Hu, X., and Guo, J., Genome-wide identification and expression profiling analysis of the galactinol synthase gene family in cassava (Manihot esculenta Crantz), Agronomy, 2018, vol. 8, p. 250.

    Article  CAS  Google Scholar 

  14. Panikulangara, T.J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H., and Schöffl, F., Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis, Plant Physiol., 2004, vol. 136, pp. 3148–3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peterbauer, T. and Richter, A., Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds, Seed Sci. Res., 2001, vol. 11, pp. 185–197.

    CAS  Google Scholar 

  16. Peterbauer, T., Karner, U., Mucha, J., Mach, L., Jones, D.A., Hedley, C.L., et al., Enzymatic control of the accumulation of verbascose in pea seeds, Plant Cell Environ., 2003, vol. 26, pp. 1385–1391.

    Article  CAS  Google Scholar 

  17. Peters, S., Mundree, S.G., Thomson, J.A., Farrant, J.M., and Keller, F., et al., Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit, J. Exp. Bot., 2007, vol. 58, pp. 1947–1956.

    Article  CAS  PubMed  Google Scholar 

  18. Santos, R., Vergauwen, R., Pacolet, P., Lescrinier, E., and Van den Ende, W., Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae), Ann. Bot., 2013, vol. 111, pp. 385–393.

    Article  PubMed  Google Scholar 

  19. Sengupta, S., Mukherjee, S., Basak, P., and Majumder, A.L., Significance of galactinol and raffinose family oligosaccharide synthesis in plants, Front. Plant Sci., 2015, vol. 6, p. 656.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sprenger, N. and Keller F., Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases, Plant J., 2000, vol. 21, pp. 249–258.

    Article  CAS  PubMed  Google Scholar 

  21. Vidal-Valverde, C., Frías, J., and Valverde, S., Changes in the carbohydrate composition of legumes after soaking and cooking, J. Am. Diet. Assoc., 1993, vol. 93, pp. 47–550.

    Article  Google Scholar 

  22. Vinson, C.C., Mota, A.P.Z., and Porto, B.N., et al., Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses, Sci. Rep., 2022, vol. 10, p. 15258.

    Article  ADS  Google Scholar 

  23. You, J., Wang, Y., and Zhang, Y., et al. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame, Sci. Rep., 2018, vol. 8, p. 4331.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, M.L., Zhang, Q., Zhou, M., Sun, Z.M., Zhu, X.M., Shao, J.R., Tang, Y.X., and Wu, Y.M., Genome-wide identification of genes involved in raffinose metabolism in Maize, Glycobiology, 2012, vol. 22, pp. 1775–1785.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the Indian Council of Agricultural Research (ICAR) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Singh Kushwah.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human/animals participants performed by any of the authors.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, N.S., Rathore, M. Genome-Wide Identification of Genes Involved in Raffinose Family Oligosaccharides Metabolism in Pea (Pisum sativum L.). Cytol. Genet. 58, 70–80 (2024). https://doi.org/10.3103/S0095452724010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724010110

Navigation