Skip to main content
Log in

Activity of Nonnucleoside Inhibitors of O6-methylguanine-DNA Methyltransferase Repair Enzyme in Human Cells In Vitro

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

This article has been updated

Abstract

The repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) eliminates alkyl lesions that play the main anticancer role in alkylating chemotherapy. The inhibition of MGMT leads to increasing effectiveness of alkylating chemotherapy. In this study, new potential MGMT inhibitors were tested. It was found that some compounds demonstrate low cytotoxicity and high effectiveness in human cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Change history

  • 31 January 2024

    Modifications have been made to the Publisher’s Note.

REFERENCES

  1. Arslan, F.T., Yurdakok-Dikmen, B., Akgedik, R., and Topcu, G., Nitrosoguanidine-induced genotoxicity and oxidative stress in human gastric adenocarcinoma cells, Mutat. Res., 2016, vol. 797, pp. 28–34.

    Google Scholar 

  2. Chae, M.-Y., Swenn, K., Kanugula, S., Dolan, M.E., Pegg, A.E., and Moschel, R.C., 8-substituted O6-benzylguanine, substituted 6(4)-(benzyloxy)pyrimidine, and related derivatives as inactivators of human O6-alkylguanine-DNA alkyltransferase, J. Med. Chem., 1995, vol. 38, no. 2, pp. 359–365. https://doi.org/10.1021/jm00002a018

    Article  CAS  PubMed  Google Scholar 

  3. Christmann, M., Verbeek, B., Roos, W.P., and Kaina, B., O6-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: Enzyme activity, promoter methylation and immunohistochemistry, Biochim. Biophys. Acta, Rev. Cancer, 2011, vol. 1816, no. 2, pp. 179–190.  https://doi.org/10.1016/j.bbcan.2011.06.002

    Article  CAS  Google Scholar 

  4. Dolan, M., Chae, M., Pegg, A., et al., Metabolism of O6-benzylguanine, an inactivator of O6-alkylguanine-DNA alkyltransferase, Cancer Res., 1994, vol. 54, no. 19, pp. 5123–5130. https://doi.org/10.1158/0008-5472.CAN-14-2047

    Article  CAS  PubMed  Google Scholar 

  5. Green, S.J. and Michael, R., Molecular Cloning, New York: Cold Spring Harbor Lab., 2012.

    Google Scholar 

  6. Griffin, R.J., Arris, C.E., Bleasdale, C., Boyle, F.T., Calvert, A.H., Curtin, N.J., Dalby, C., Kanugula, S., Lembicz, N.K., Newell, D.R., Pegg, A.E., and Golding, B.T., Resistance-Modifying Agents. 8. Inhibition of O 6-Alkylguanine-DNA Alkyltransferase by O 6-Alkenyl-, O 6-Cycloalkenyl-, and O 6-(2-Oxoalkyl)guanines and Potentiation of Temozolomide Cytotoxicity in Vitro by O6-(1-Cyclopentenylmethyl)guanine, J. Med. Chem., 2000, vol. 43, no. 22, pp. 4071–4083. https://doi.org/10.1021/jm000961o

    Article  CAS  PubMed  Google Scholar 

  7. Kaina, B., Margison, G.P., and Christmann, M., Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy, Cell. Mol. Life Sci., 2010, vol. 67, no. 21, pp. 3663–3681.  https://doi.org/10.1007/s00018-010-0491-7

    Article  CAS  PubMed  Google Scholar 

  8. Kotsarenko, K.V., Lylo, V.V., Macewicz, L.L., Dasyukevich, O.I., Poltoratskaya, L.V., and Burkovskaya, T.E., Changes in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro, Cytol. Genet., 2013, vol. 47, no. 4, pp. 202–209. https://doi.org/10.3103/S0095452713040087

    Article  Google Scholar 

  9. Kotsarenko, K., Lylo, V., Ruban, T., Macewicz, L., and Lukash, L., Effects of some growth factors and cytokines on the expression of the repair enzyme MGMT and protein MARP in human cells in vitro, Biochem. Genet., 2018, vol. 56, pp. 459–477. https://doi.org/10.1007/s10528-018-9854-9

    Article  CAS  PubMed  Google Scholar 

  10. Lipinski, C.A., Lead- and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technol., 2004, vol. 1, no. 4, pp. 337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  Google Scholar 

  11. Lopez, S., Margison, G.P., McElhinney, R.S., Cordeiro, A., McMurry, T.B H., and Rozas, I., Towards more specific O 6-methylguanine-DNA methyltransferase (MGMT) inactivators, Bioorg. Med. Chem., 2011, vol. 19, no. 5, pp. 1658–1665. https://doi.org/10.1016/j.bmc.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  12. Lukash, L.L., Bodt, J., Pegg, A.E., Dolan, M.E., Maher, V.M., and McCormick, J., Effect of O 6-alkylguanine-DNA alkyltransferase on the frequency and spectrum of mutations induced by N-methyl-N’-nitro-N-nitrosoguanidine in the HPRT gene of diploid human fibroblasts, Mutat. Res., 1991, vol. 250, no. 12, pp. 397–409. https://doi.org/10.1016/0027-5107(91)90196-U

    Article  CAS  PubMed  Google Scholar 

  13. McElhinney, R., Donnelly, D., McCormick, A., et al., Inactivation of O 6-alkylguanine-DNA alkyltransferase. 1. Novel O 6-(hetarylmethyl)guanines having basic rings in the side chain, J. Med. Chem., 1998, vol. 41, no. 26, pp. 5265–5271. https://doi.org/10.1021/jm9804388

    Article  CAS  PubMed  Google Scholar 

  14. Mitra, S., MGMT: A personal perspective, DNA Repair, 2007, vol. 6, no. 8, pp. 1064–1070. https://doi.org/10.1016/j.dnarep.2007.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohanty, S., Sharma, P., Gupta, P.K., and Chatterjee, S., Nitrosoguanidine-induced DNA damage response in Escherichia coli cells, Mutat. Res., 2019, vol. 842, pp. 18–27. https://doi.org/10.1016/j.mrgentox.2019.04.006

    Article  CAS  Google Scholar 

  16. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexiblity, J. Comput. Chem., 2009, vol. 30, pp. 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moschel, R.C., McDougall, M., Dolan, M.E., Pegg, A.E., and Phillips, D.R., Structural features of substituted purine derivatives compatible with depletion of human O 6-alkylguanine-DNA alkyltransferase, J. Med. Chem., 1992, vol. 35, no. 23, pp. 4486–4491. https://doi.org/10.1021/jm00103a019

    Article  CAS  PubMed  Google Scholar 

  18. Oshiro, S., Tsugu, H., Komatsu, F., Ohmura, T., Ohta, M., Sakamoto, S., Fukushima, T., and Inoue, T., Efficacy of Temozolomide Treatment in Patients with High-grade Glioma, Anticancer Res., 2009, vol. 29, pp. 911–918. https://ar.iiarjournals.org/content/29/3/911.full.

    CAS  PubMed  Google Scholar 

  19. Pauly, G., Loktionova, N., Fang, Q., et al., Substitution of aminomethyl at the meta-position enhances the inactivation of O 6-alkylguanine-DNA alkyltransferase by O 6-benzylguanine, J. Med. Chem., 2008, vol. 51, no. 22, pp. 7144–7153. https://doi.org/10.1021/jm800758y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pedretti, A., Mazzolari, A., Gervasoni, S., Fumagalli, L., and Vistoli, G., The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects, Bioinformatics, 2021, vol. 37, no. 8, pp. 1174–1175. https://doi.org/10.1093/bioinformatics/btaa774

    Article  CAS  PubMed  Google Scholar 

  21. Pegg, A.E., Repair of O 6-alkylguanine by alkyltransferases, Mutat. Res., 2000, vol. 462, nos. 2–3, pp. 83–100. https://doi.org/10.1016/s1383-5742(00)00017-x

    Article  CAS  PubMed  Google Scholar 

  22. Pegg, A.E., Multifaceted roles of alkyltransferase and related proteins in DNA Repair, DNA damage, resistance to chemotherapy, and research tools, Chem. Res. Toxicol., 2011, vol. 24, no. 5, pp. 618–639.  https://doi.org/10.1021/tx200031q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quinn, J.A., Jiang, S.X., Carter, J., Reardon, D.A., Desjardins, A., Vredenburgh, J.J., Friedman, H.S., Phase II trial of gliadel plus O 6-benzylguanine in Adults with recurrent glioblastoma multiforme, Clin. Cancer Res., 2009, vol. 15, no. 3, pp. 1064–1068.  https://doi.org/10.1158/1078-0432.ccr-08-2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ranson, M., Lomeguatrib, a potent inhibitor of O 6-alkylguanine-DNA-alkyltransferase: Phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors, Clin. Cancer Res., 2006, vol. 12, no. 5, pp. 1577–1584.  https://doi.org/10.1158/1078-0432.ccr-05-2198

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz, F., Gil-Redondo, R., Morreale, A., et al., Structure-based discovery of novel non-nucleosidic DNA alkyltransferase inhibitors: virtual screening and in vitro and in vivo activities, J. Chem. Inf. Modell., 2008, vol. 48, no. 10, pp. 1972–1982. https://doi.org/10.1021/ci800202t

    Article  Google Scholar 

  26. Sharma, S., Salehi, S., Yang, Y., and Vessella, R.L., Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis, Anticancer Res., 2009, vol. 29, no. 10, pp. 3759–3768. https://doi.org/10.1016/j.etap.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  27. Terashima, I. and Kohda, K., Inhibition of human O 6-alkylguanine-DNA alkyltransferase and potentiation of the cytotoxicity of chloroethylnitrosourea by 4(6)-(benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogues, J. Med. Chem., 1998, vol. 41, no. 4, pp. 503–508. https://doi.org/10.1021/jm970712f

    Article  CAS  PubMed  Google Scholar 

  28. Verbeek, B., Southgate, T.D., Gilham, D.E., and Margison, G.P., O 6-methylguanine-DNA methyltransferase inactivation and chemotherapy, Br. Med. Bull., 2008, vol. 85, no. 1, pp. 17–33.  https://doi.org/10.1093/bmb/ldm036

    Article  CAS  PubMed  Google Scholar 

  29. Volynets, G.P., Ruban, T.P., Yatsyshina, A.P., Matsevich, L.L., Bdzhola, V.G., Yarmolyuk, S.M., and Lukash, L.L., RF Patent 127059, 2018. https:// base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=2.492.48.

  30. Volynets, G.P., Yatsyshina, A.P., Ruban, T.P., Matse-vich, L.L., Nidoyeva, Z.M., Balanda, A.O., Bdzhola, V.G., Yarmolyuk, S.M., and Lukash, L.L., Ukraine Patent 122373, 2020. https://base.uipv.org/ searchINV/search.php?action=viewdetails&IdClaim =271905.

  31. Wang, C., Abegg, D., Hoch, D., and Adibekian, A., Chemoproteomics-enabled discovery of a potent and selective inhibitor of the DNA repair protein MGMT, Angew. Chem., Int. Ed., 2016, vol. 55, no. 10, pp. 2911–2915. https://doi.org/10.1002/anie.201510203

    Article  CAS  Google Scholar 

  32. Yu, W., Zhang, L., Wei, Q., and Shao, A., O6-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy, Front. Oncol., 2020, vol. 9, p. 1547.  https://doi.org/10.3389/fonc.2019.01547

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, X., Zhou, Y., Hu, Y., and Huang, P., Nitrosoguanidine-induced DNA damage and cell cycle arrest in human liver cells, Environ. Toxicol. Pharmacol., 2019, vol. 68, pp. 66–71. https://doi.org/10.1016/j.etap.2019.03.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. Zhuvaka, G. P. Volynets, T. P. Ruban, Z. M. Nidoeva, A. P. Iatsyshyna, L. L. Macewizc, V. G. Bdzhola, S. M. Yarmoluk or L. L. Lukash.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

CONCLUSIONS

In this study we examined a number of compounds for their potential as MGMT inhibitors and assessed their cytotoxicity and effectiveness in vitro. Results indicated that compounds 41 (5-(5-Сhloro-2-hydroxy-benzylidene)-4-thioxo-thiazolidin-2-one), 41B (5-Benzo[1,3]dioxol-5-ylmethylene-thiazolidine-2,4-dione), and 89 (2-[5-(4-Bromo-phenyl)-pyrimidin-4-yl]-5-ethoxy-phenol) showed promising characteristics with lower cytotoxicity and higher effectiveness compared to the standard inhibitor BG at a concentration of 10 µM.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuvaka, K.S., Volynets, G.P., Ruban, T.P. et al. Activity of Nonnucleoside Inhibitors of O6-methylguanine-DNA Methyltransferase Repair Enzyme in Human Cells In Vitro. Cytol. Genet. 57, 556–566 (2023). https://doi.org/10.3103/S0095452723060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723060105

Keywords:

Navigation