Skip to main content
Log in

Distribution of Alleles of β-Carotene Hydroxylase 1 Gene in Modern Genotypes of Zea mays L.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Carotenoids as the precursors in vitamin A synthesis are important micronutrients in human nutrition and animal feeding. β-Carotene is converted to vitamin A in an animal organism in the most efficient way. Increasing its content in mature maize grain is possible through applying the marker-associated breeding to identify genotypes with favorable allelic states of key carotenoid biosynthesis pathway genes. The β-carotene hydroxylase 1 gene is important for the accumulation of β-carotene in mature maize grain. One of its alleles blocks the conversion of β-carotene to β-cryptoxanthin and, thus, ensures the accumulation of β-carotene in the mature grain. This favorable allele can be identified with the crtRB1-3'TE marker and the method of polymerase chain reaction as a 543-bp long amplicon in contrast to two other amplicons, 296-bp and 296-bp + 875-bp, unassociated with the increase in the β-carotene content in the grain at full maturity. It was established that 26.7% of 15 wide-known inbreds of foreign breeding and 21.6% of 153 prospective inbreds from the Dnipro Maize Breeding Program carried the β-carotene hydroxylase 1 gene allele (543-bp) favorable for the accumulation of β-carotene. This allele was identified among a majority of the analyzed maize subspecies, germplasms, and maturity groups, although the tendency towards an increase in its frequency was recorded among inbreds with the flint type of kernels, Lancaster and Lacaune germplasms, and among early and middle early inbreds. The current maize lines identified by the crtRB1-3'TE marker as carriers of the 543-bp allele in the β-carotene hydroxylase 1 gene are recommended for application in special marker-assisted breeding programs for increasing the β-carotene content in particular maize subspecies, groups of maturity, and germplasm types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Abraham, M.E., Weimer, S.L., Scoles, K., et al., Orange corn diets associated with lower severity of footpad dermatitis in broilers, Poult. Sci., 2021, vol. 100, no. 5, p. 101054. https://doi.org/10.1016/j.psj.2021.101054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ali, F., Qanmber, G., Li, F., et al., Updated role of ABA in seed maturation, dormancy, and germination, J. Adv. Res., 2022, vol. 35, pp. 199–214. https://doi.org/10.1016/j.jare.2021.03.011

    Article  CAS  PubMed  Google Scholar 

  3. Babu, R., Rojas, N.P., Gao, S., et al., Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations, Theor. Appl. Genet., 2013, vol. 2016, pp. 389–399. https://doi.org/10.1007/s00122-012-1987-3

    Article  CAS  Google Scholar 

  4. Baseggio, M., Murray, M., Magallanes-Lundback, M., et al., Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn, Plant Genome, 2020, vol. 13, no. 1, p. e20008. https://doi.org/10.1002/tpg2.20008

    Article  CAS  PubMed  Google Scholar 

  5. Baveja, A., Muthusamy, V., Panda, K.K., et al., Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes, J. Appl. Genet., 2021, https://doi.org/10.1007/s13353-021-00633-4

  6. Carazo, A., Macáková, K., Matoušová, K., et al., Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity, Nutrients, 2021, vol. 13, no. 5, p. 1703. https://doi.org/10.3390/nu13051703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chauhan, H.S., Chhabra, R., Rashmi, T., et al., Impact of vte4 and crtRB1 genes on composition of vitamin-E and provitamin-A carotenoids during kernel-stages in sweet corn, J. Food Composit. Analysis, 2022, vol. 105, p. 104264. https://doi.org/10.1016/j.jfca.2021.104264

    Article  CAS  Google Scholar 

  8. Cherchel, V.Yu., Dziubetskyi, B.V., Satarova, T.M., et al., Initial Material of Lancaster Germplasm in Maize Selection and Biotechnology, Kyiv: Agrarna Nauka, 2020, pp. 20–43. https://doi.org/10.31073/978-966-540-500-9

  9. Cheremisina, S.H., Grain market in Ukraine: analysis of the current state and development prospects, Ekon. APK, 2021a, no. 2, p. 48. https://doi.org/10.32317/2221-1055.202102048

  10. Cheremisina, S.H., Status and prospects of development of grain exports from Ukraine to African countries, Ekon. APK, 2021b, no. 3, p. 33. https://doi.org/10.32317/2221-1055.202103033

  11. Colombo, R., Ferron, L., and Papetti, A., Colored Corn: An up-date on metabolites extraction, health implication, and potential use, Molecules, 2021, vol. 26, no. 1, p. 199. https://doi.org/10.3390/molecules26010199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Das, A.K., Gowda, M.M., Muthusamy, V., et al., Development of maize hybrids with enhanced vitamin-E, vitamin-A, lysine, and tryptophan through molecular breeding, Front. Plant Sci., 2021, vol. 12, p. 659381. https://doi.org/10.3389/fpls.2021.659381

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duo, H., Hossain, F., Muthusamy, V., et al., Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding, PLoS One, 2021, vol. 16, no. 2, p. e0245497. https://doi.org/10.1371/journal.pone.0245497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goredema-Matongera, N., Ndhlela, T., Magorokosho, C., et al., Multinutrient biofortification of maize (Zea mays L.) in Africa: current status, opportunities and limitations, Nutrients, 2021, vol. 13, no. 3, p. 1039. https://doi.org/10.3390/nu13031039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goswami, R., Zunjare, R.U., Khan, S., et al., Genetic variability of kernel provitamin-A in sub-tropically adapted maize hybrids possessing rare allele of β-carotene hydroxylase, Cereal Res. Commun., 2019, vol. 47, pp. 205–215. https://doi.org/10.1556/0806.47.2019.12

    Article  CAS  Google Scholar 

  16. Graça Dias, M., Borge, G.I.A., Kljak, K., et al., European database of carotenoid levels in foods. Factors affecting carotenoid content, Foods, 2021, vol. 10, no. 5, p. 912. https://doi.org/10.3390/foods10050912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harjes, C.E., Rocheford, T.R., Bai, L., et al., Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification, Science, 2008, vol. 319, no. 5861, pp. 330–333. https://doi.org/10.1126/science.1150255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hwang, T., Ndolo, V.U., Katundu, M., et al., Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi, Food Chem., 2016, vol. 196, pp. 1315–1324. https://doi.org/10.1016/j.foodchem.2015.10.067

    Article  CAS  PubMed  Google Scholar 

  19. Kebede, D., Mengesha, W., Menkir, A., et al., Marker based enrichment of provitamin A content in two tropical maize synthetics, Sci. Rep., 2021, vol. 11, p. 14998. https://doi.org/10.1038/s41598-021-94586-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kljak, K., Duvnjak, M., Bedeković, D., et al., Commercial corn hybrids as a single source of dietary carotenoids: effect on egg yolk carotenoid profile and pigmentation, Sustainability, 2021, vol. 13, no. 21, p. 12287. https://doi.org/10.3390/su132112287

    Article  CAS  Google Scholar 

  21. Maazou, A.-R.S., Gedil, M., Adetimirin, V.O., et al., Comparative assessment of effectiveness of alternative genotyping assays for characterizing carotenoids accumulation in tropical maize inbred lines, Agronomy, 2021, vol. 11, no. 10, p. 2022. https://doi.org/10.3390/agronomy11102022

    Article  CAS  Google Scholar 

  22. Mehta, B.K., Muthusamy, V., Zunjare, R.U., et al., Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding, J. Cereal Sci., 2020, vol. 96, p. 103093. https://doi.org/10.1016/j.jcs.2020.103093

    Article  CAS  Google Scholar 

  23. Mehta, B.K., Chhabra, R., Muthusamy, V., et al., Expression analysis of β-carotene hydroxylase1 and opaque2 genes governing accumulation of provitamin-A, lysine and tryptophan during kernel development in biofortified sweet corn, 3 Biotech, 2021, vol. 11, p. 325. https://doi.org/10.1007/s13205-021-02837-1

  24. Menkir, A., Dieng, I., Mengesha, W., et al., Unravelling the effect of provitamin a enrichment on agronomic performance of tropical maize hybrids, Plants (Basel), 2021, vol. 10, no. 8, p. 1580. https://doi.org/10.3390/plants10081580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mladenović-Drinić, S., Vukadinović, J., Srdić, J., et al., Effect of cooking on the content of carotenoids and tocopherols in sweet corn, Food Feed Res., 2021,vol. 48, no. 2. https://doi.org/10.5937/ffr0-31960

  26. Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, pp. 4321–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., et al., Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme, Cogent Food Agric., 2015, vol. 1, no. 1, p. 1033141. https://doi.org/10.1080/23311932.2015.1033141

    Article  CAS  Google Scholar 

  28. Naqvi, Sh., Zhu, Ch., Farre, G., et al., Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 19, p. 7762–7767. https://doi.org/10.1073/pnas.0901412106

    Article  PubMed  PubMed Central  Google Scholar 

  29. Natesan, S., Singh, T.S., Duraisamy, T., et al., Characterization of crtRB1 gene polymorphism and β-carotene content in maize landraces originated from North Eastern Himalayan region (NEHR) of India, Front. Sustainable Food Syst., 2020, vol. 4, p. 78. https://doi.org/10.3389/fsufs.2020.00078

    Article  Google Scholar 

  30. Petrychenko, V.F. and Tomashuk, O.V., Features of formation of indicators of quality of corn grain at various technologies of cultivation in the Foreststeppe of the Right bank, Plant Soil Sci., 2019, vol. 10, no. 2. https://doi.org/10.31548/agr2019.02.029

  31. Qutub, M., Chandran, S., Rathinavel, K., et al., Improvement of a Yairipok Chujak maize landrace from North Eastern Himalayan region for β-carotene content through molecular marker-assisted backcross breeding, Genes, 2021, vol. 12, no. 5, p. 762. https://doi.org/10.3390/genes12050762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roca, M. and Pérez-Gálvez, A., Metabolomics of chlorophylls and carotenoids: analytical methods and metabolome-based studies, Antioxidants (Basel), 2021, vol. 10, no. 10, p. 1622. https://doi.org/10.3390/antiox10101622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saenz, E., Borrás, L., and Gerde, J.A., Carotenoid profiles in maize genotypes with contrasting kernel hardness, J. Cereal Sci., 2021, vol. 99, p. 103206. https://doi.org/10.1016/j.jcs.2021.103206

    Article  CAS  Google Scholar 

  34. Sagare, D., Shetti, P., Surender, M., et al., Marker-assisted backcross breeding for enhancing β-carotene of QPM inbreds, Mol. Breed., 2019, vol. 39, no. 2, p. 31. https://doi.org/10.1007/s11032-019-0939-x

    Article  CAS  Google Scholar 

  35. Satarova, T.M., Semenova, V.V., Zhang, J., et al., Differentiation of maize breeding samples by β-carotene content, Regul. Mech. Biosyst., 2019, vol. 10, no. 1, pp. 63–68. https://doi.org/10.15421/021910

    Article  Google Scholar 

  36. Sathasivam, R., Radhakrishnan, R., Kim, J.K., et al., An update on biosynthesis and regulation of carotenoids in plants, S. Afr. J. Bot., 2021, vol. 140, pp. 290–302. https://doi.org/10.1016/j.sajb.2020.05.015

    Article  CAS  Google Scholar 

  37. Sun, X., Ma, L., Lux, P.E., et al., The distribution of phosphorus, carotenoids and tocochromanols in grains of four Chinese maize (Zea mays L.) varieties, Food Chem., 2022, vol. 367, p. 130725. https://doi.org/10.1016/j.foodchem.2021.130725

    Article  CAS  PubMed  Google Scholar 

  38. Von Lintig, J., Moon, J., and Babino, D., Molecular components affecting ocular carotenoid and retinoid homeostasis, Prog. Retinal Eye Res., 2020, vol. 80, p. 100864. https://doi.org/10.1016/j.preteyeres.2020.100864

    Article  CAS  Google Scholar 

  39. Welham, S.J., Gezan, S.A., Clark, S.J., et al., Statistical Methods in Biology: Design and Analysis of Experiments and Regression, Boca Raton: CRC Press, 2014.

    Book  Google Scholar 

  40. Yan, J., Kandianis, C.B., Harjes, C.E., et al., Rare genetic variation at Zea mays crtRB1 increases betacarotene in maize grain, Nat. Genet., 2010, vol. 42, pp. 322–327. https://doi.org/10.1038/ng.551

    Article  CAS  PubMed  Google Scholar 

  41. Zafar, J., Aqeel, A., Shah, F.I., et al., Biochemical and immunological implications of Lutein and Zeaxanthin, Int. J. Mol. Sci., 2021, vol. 22, no. 20, p. 10910. https://doi.org/10.3390/ijms222010910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zatyshniak, O.V., Cherchel, V.Yu., Dziubetskyi, B.V., et al., Marker-assisted selection for the gene of β-carotene hydroxylase in maize, Factory Exp. Evol. Org., 2020, vol. 27, pp. 83–88. https://doi.org/10.7124/FEEO.v27.1307

    Article  Google Scholar 

  43. Zhai, S.N., Xia, X.C., and He, óL.H., Carotenoids in staple cereals: metabolism, regulation and genetic manipulation, Front. Plant Sci., 2016, vol. 7, p. 1197. https://doi.org/10.3389/fpls.2016.01197

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zurak, D., Grbeša, D., Duvnjak, M., et al., Carotenoid content and bioaccessibility in commercial maize hybrids, Agriculture, 2021, vol. 11, no. 7, p. 586. https://doi.org/10.3390/agriculture11070586

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Yu.O. Goncharov, K.V. Veselyanska, and O.V. Zatyshniak for their technical support in conducting laboratory investigations.

Funding

The study was fulfilled in accordance with PSR 14—Biotechnological and Molecular Genetic Methods to Improve Quantity and Quality Traits of Plants, according to task 14.00.01.02.F—Basic Principles for the Biotechnological Providing of Breeding Process in Maize Using Functional Molecular Genetic Markers, state registration no. 0121U107829; and by PSR 15—Agrobiological Systems for Grain Production in Ukraine. Maize and Sorghum Selection and Seed Production, according to task 15.01.00.01.F—Theoretical Basic Principles for Grain Yield Increase of Early Maturing Maize Hybrids, FAO 150–290 adapted to the conditions of different climatic zones of Ukraine, state registration no. 0121U108630, with the financial support of the National Academy of Agrarian Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. M. Satarova, K. V. Denysiuk, V. Yu. Cherchel or B. V. Dziubetskyi.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any investigations with the use of people and animals as subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satarova, T.M., Denysiuk, K.V., Cherchel, V.Y. et al. Distribution of Alleles of β-Carotene Hydroxylase 1 Gene in Modern Genotypes of Zea mays L.. Cytol. Genet. 57, 35–43 (2023). https://doi.org/10.3103/S0095452723010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723010115

Navigation