Skip to main content
Log in

Reproduction and the Evolutionary Potential of the Hybrid Form Pelophylax Esculentus-Bidibundus (Amphibia, Ranidae) within the Drainages of Pripyat, Dniester, and Southern Bug Rivers

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The genetic diversity of the marsh frog Pelophylax ridibundus populations and the hemiclonal structure of the hybrid form Pelophylax esculentus-ridibundus within the drainages of Prypyat, Dniester, and Southern Bug rivers were analyzed. The absence of a single evolutionary scenario for this hybrid form within the borders of the region has been revealed. The conservation of the basic level of parental species’ evolutionary potential and the interpopulation differentiation of the hybrid form within the drainages of Dniester and Southern Bug rivers was demonstrated. At the same time, in the populations of P. esculentus-ridibundus from the Prypyat basin, a loss of evolutionary potential was revealed (by 31% in the southern part, by 69% in the northern part). It was revealed that the reason for this was the tendency to the extinction of rare haplotypes and the expansion of the mass ones. It was also demonstrated that there was a significant increase (nine to ten times) in the interpopulation differentiation of the hybrid form from the Prypyat River drainage compared with sympatric populations of the parental species P. ridibundus. It was shown that the evolutionary potential loss of the hybrid form P. esculentus-ridibundus accelerated in the absence of parental species, which confirms the hypothesis about regular hybridization as an effective mechanism to compensate for the loss of evolutionary potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Adamson, K., Laas, M., Blumenstein, K., Busskamp, J., Langer, G.J., Klavina, D., Kaur, A., Maaten, T., Mullett, M.S., Müller, M.M., Ondrušková, E., Padari, A., Pilt, E., Riit, T., Solheim, H., Soonvald, L., Tedersoo, L., Terhonen, E., and Drenkhan, R., Highly clonal structure and abundance of one haplotype characterise the Diplodia sapinea populations in Europe and Western Asia, J. Fungi, 2021, vol. 7, no. 8, p. 634. https://doi.org/10.3390/jof7080634

    Article  CAS  Google Scholar 

  2. De Russo Godoy, F.M., Lenzi, M., Dos Santos Ferreira, B.H., Da Silva, L.V., Zanella, C.M., and Paggi, G.M., High genetic diversity and moderate genetic structure in the self-incompatible, clonal Bromelia hieronymi (Bromeliaceae), Bot. J. Linn. Soc., 2018, vol. 187, no. 4, pp. 672–688. https://doi.org/10.1093/botlinnean/boy037

    Article  Google Scholar 

  3. Ficetola, G.F., Padoa-Schioppa, E., Wang, J., and Garner, T.W.J., Polygyny, census and effective population size in the threatened frog, Rana latastei, Anim. Conserv., 2010, vol. 13, pp. 82–89. https://doi.org/10.1111/j.1469-1795.2009.00306.x

    Article  Google Scholar 

  4. Hodač, L., Klatt, S., Hojsgaard, D., Sharbel, T.F., and Hörandl, E., A little bit of sex prevents mutation accumulation even in apomictic polyploid plants, BMC Evol. Biol., 2019, vol. 19, p. 170. https://doi.org/10.1186/s12862-019-1495-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoffman, E.A., Schueler, F.W., and Blouin, M.S., Effective population sizes and temporal stability of genetic structure in Rana pipiens, the northern leopard frog, Evolution, 2004, vol. 58, no. 11, pp. 2536-2545. https://doi.org/10.1111/j.0014-3820.2004.tb00882.x

    Article  PubMed  Google Scholar 

  6. Hotz, H., Guex, G.D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008, vol. 46, no. 1, pp. 56–62. https://doi.org/10.1111/j.1439-0469.2007.00430.x

    Article  Google Scholar 

  7. Janko, K., Drozd, P., and Eisner, J., Do clones degenerate over time? Explaining the genetic variability of asexuals through population genetic models, Biol. Direct, 2011, vol. 6, p. 17. https://doi.org/10.1186/1745-6150-6-17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jokela, J., Dybdahl, M.F., and Lively, C.M., The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails, Am. Nat., 2009, vol. 174, pp. 43–53. https://doi.org/10.1086/599080

    Article  Google Scholar 

  9. Kočí, J., Röslein, J., Pačes, J., Kotusz, J., Halačka, K., Koščo, J., Fedorčák, J., Iakovenko, N., and Janko, K., No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets, Mol. Ecol., 2020, vol. 29, no. 16, pp. 3038–3055. https://doi.org/10.1111/mec.15539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lakin, G.F., Biometriya: uchebnoe posobie dlya biologicheskikh spetsial’nostei vuzov (Biometrics. Textbook for Biology Specialist of Universities), Moscow: Higher School, 1990.

  11. Lande, R. and Berrouklaf, Dzh., Effective population size, genetic variation and their use for population management, in Zhiznesposobnost’ populyatsiy: Prirodookhrannyye aspekty (Viability of Populations: Conservation Aspects), Suleya, M., Ed., Moscow: Mir,1989, pp. 117–157.

  12. Mehmood, Y., Sambasivam, P., Kaur, S., Davidson, J., Leo, A.E., Hobson, K., Linde, C.C., Moore, K., Brownlie, J., and Ford, R., Evidence and consequence of a highly adapted clonal haplotype within the Australian Ascochyta rabiei population, Front. Plant Sci., 2017, vol. 8, p. 1029. https://doi.org/10.3389/fpls.2017.01029

    Article  PubMed  PubMed Central  Google Scholar 

  13. Morales-Hojas, R., Gonzalez-Uriarte, A., Alvira Irai-zoz, F., Jenkins, T., Alderson, L., Kruger, T., Hall, M.J., Greenslade, A., Shortall, C.R., and Bell, J.R., Population genetic structure and predominance of cyclical parthenogenesis in the bird cherry-oat aphid Rhopalosiphum padi in England, Evol. Appl., 2020, vol. 13, no. 5, pp. 1009–1025. https://doi.org/10.1111/eva.12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Tisa river drainage, Cytol. Genet., 2017, vol. 51, pp. 470–477. https://doi.org/10.3103/S0095452717060093

    Article  Google Scholar 

  15. Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River Basins, Cytol. Genet., 2019, vol. 53, pp. 49–59. https://doi.org/10.3103/S0095452719010092

    Article  Google Scholar 

  16. Mutnale, M.C., Anand, S., Eluvathingal, L.M., Roy, J.K., Reddy, G.S., and Vasudevan, K., Enzootic frog pathogen Batrachochytrium dendrobatidis in Asian tropics reveals high ITS haplotype diversity and low prevalence, Sci. Rep., 2018, vol. 8, p. 10125. https://doi.org/10.1038/s41598-018-28304-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 74, pp. 379–390. https://doi.org/10.1093/genetics/76.2.379

    Article  Google Scholar 

  18. Neiman, M., Meirmans, S., and Meirmans, P.G., What can asexual lineage age tell us about the maintenance of sex?, Ann. N. Y. Acad. Sci., 2009, vol. 1168, pp. 185–200. https://doi.org/10.1111/j.1749-6632.2009.04572.x

    Article  PubMed  Google Scholar 

  19. Phillipsen, I.C., Funk, W.C., Hoffman, E.A., Monsen, K.J., and Blouin, M.S., Comparative analyses of effective population size within and among species: ranid frogs as a case study, Evolution, 2011, vol. 65, no. 10, pp. 2927–2945. https://doi.org/10.1111/j.1558-5646.2011.01356.x

    Article  PubMed  Google Scholar 

  20. Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001, vol. 55, no. 11, pp. 2319–2332. https://doi.org/10.1111/j.0014-3820.2001.tb00745.x

    Article  CAS  PubMed  Google Scholar 

  21. Vrijenhoek, R.C., Angus, R.A., and Schultz, R.J., Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis, Evolution, 1977, vol. 31, no. 4, pp. 767–781. https://doi.org/10.2307/2407438

    Article  PubMed  Google Scholar 

  22. Warren, W.C., García-Pérez, R., Xu, S., Lampert, K.P., Chalopin, D., Stöck, M., Loewe, L., Lu, Y., Kuder-na, L., Minx, P., Montague, M.J., Tomlinson, C., Hillier, L.W., Murphy, D.N., Wang, J., Wang, Z., Garcia, C.M., Thomas, G.C.W., Volff, J.N., Farias, F., Aken, B., Walter, R.B., Pruitt, K.D., Marques-Bonet, T., Hahn, M.W., Kneitz, S., Lynch, M., and Schartl, M., Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly, Nat. Ecol. Evol., 2018, vol. 2, pp. 669–679. https://doi.org/10.1038/s41559-018-0473-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu, S., Huynh, T.V., and Snyman, M., The transcriptomic signature of obligate parthenogenesis, Heredity, 2022, vol. 128, pp. 132–138. https://doi.org/10.1038/s41437-022-00498-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin, M., Petrusek, A., Seda, J., and Wolinska, J., Fine-scale temporal and spatial variation of taxon and clonal structure in the Daphnia longispina hybrid complex in heterogeneous environments, BMC Evol. Biol., 2012, vol. 12, p. 12. https://doi.org/10.1186/1471-2148-12-12

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am sincerely grateful to colleagues Doctor of Biological Sciences, Professor S.V. Mezhzherin; O.D. Nekrasova, PhD; L.I. Razvodovs’kaya, PhD; and O.V. Rostovskaya, PhD, for invaluable help in collecting the primary material, its laboratory processing, interpretation of the obtained data, and preparation of the manuscript of this article.

Funding

This study was carried out within the framework of the implementation of the prospective research work plan Evolutionary and Genetic Consequences of Anthropogenic Transformation of the Animal World of Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine (no. III-38-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Morozov-Leonov.

Ethics declarations

Conflict of interest. The author declares that he has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov-Leonov, S.Y. Reproduction and the Evolutionary Potential of the Hybrid Form Pelophylax Esculentus-Bidibundus (Amphibia, Ranidae) within the Drainages of Pripyat, Dniester, and Southern Bug Rivers. Cytol. Genet. 57, 44–54 (2023). https://doi.org/10.3103/S0095452723010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723010085

Navigation