Skip to main content

Detection of Chromosomal Aneuploidies in Human Blastomeres Using FISH Increases the Success of IVF by Improving the Chances of Embryo Progress to Delivery

Abstract

The efficiency of PGT-A have been studied in patients with previous IVF failure, recurrent pregnancy loss, idiopathic infertility and infertility due to other causes. More than 50% of all embryos produced in four experimental and one control groups were found to be aneuploid. Aneuploidies of autosomes 15 and 18 and of both sex chromosomes were the ones most frequently observed. Most aneuploidies were detected in patients with previous IVF failure and idiopathic infertility. After selecting euploid embryos for transfer, high clinical pregnancy rates were achieved in all study groups. In at least 30% of patients in each study group, IVF treatment coupled with PGT-A resulted in live birth. The highest live birth rate was observed in patients with recurrent pregnancy loss and previous IVF failure, thus clearly demonstrating the benefits of offering PGT-A as part of treatment for various types of infertility.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. Andersen, C.Y. and Andersen, K.V., Improving the luteal phase after ovarian stimulation: reviewing new options, Reprod. BioMed. Online, 2014, vol. 28, no. 5, pp. 552–559. https://doi.org/10.1016/j.rbmo.2014.01.012

    CAS  Article  Google Scholar 

  2. Álvarez, C., García-Garrido, C., Taronger, R., and González de Merlo, G., In vitro maturation, fertilization, embryo development and clinical outcome of human metaphase-I oocytes retrieved from stimulated intracytoplasmic sperm injection cycles, Indian J. Med. Res., 2013, vol. 137, no. 2, pp. 331–338.

    PubMed  PubMed Central  Google Scholar 

  3. Baltaci, V., Satiroglu, H., Kabukçu, C., Ünsal, E., Aydinuraz, B., Üner, O., Aktas, Y., Çetinkaya, E., Turhan, F., and Aktan, A., Relationship between embryo quality and aneuploidies, Reprod. BioMed. Online, 2006, vol. 12, no. 1, pp. 77–82. https://doi.org/10.1016/s1472-6483(10)60984-4

    CAS  Article  PubMed  Google Scholar 

  4. Bianco, K., Caughey, A.B., Shaffer, B.L., Davis, R., and Norton, M.E., History of miscarriage and increased incidence of fetal aneuploidy in subsequent pregnancy, Obstet. Gynecol., 2006, vol. 107, no. 5, pp. 1098–1102. https://doi.org/10.1097/01.AOG.0000215560.86673.22

    Article  PubMed  Google Scholar 

  5. Colls, P., Escudero, T., Fischer, J., Cekleniak, N.A., Ben-Ozer, S., Meyer, B., Damien, M., Grifo, J.A., Hershlag, A., and Munné, S., Validation of array comparative genome hybridization for diagnosis of translocations in preimplantation human embryos, Reprod. BioMed. Online, 2012, vol. 24, no. 6, pp. 621–629. https://doi.org/10.1016/j.rbmo.2012.02.006

    CAS  Article  PubMed  Google Scholar 

  6. Dahan, M.H. and Tannus, S., Believing that transferring more embryos will result in increased pregnancy rates: a flawed concept: a SWOT analysis, Middle East Fertil. Soc. J., 2020, vol. 25, art. ID 32. https://doi.org/10.1186/s43043-020-00042-3

    Article  Google Scholar 

  7. Elsayed, G.M., El Assiouty, L., and El Sobky, E.S., The importance of rapid aneuploidy screening and prenatal diagnosis in the detection of numerical chromosomal abnormalities, SpringerPlus, 2013, vol. 29, no. 2, art. ID 490. https://doi.org/10.1186/2193-1801-2-490

    Article  Google Scholar 

  8. Esfandiari, N., Bunnell, M.E., and Casper, R.F., Human embryo mosaicism: did we drop the ball on chromosomal testing?, J. Assist. Reprod. Genet., 2016, vol. 33, no. 11, pp. 1439–1444. https://doi.org/10.1007/s10815-016-0797-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ferraretti, A.P., Magli, M.C., Kopcow, L., and Gianaroli, L., Prognostic role of preimplantation genetic diagnosis for aneuploidy in assisted reproductive technology outcome, Hum. Reprod., 2004, vol. 19, no. 3, pp. 694–699. https://doi.org/10.1093/humrep/deh121

    CAS  Article  PubMed  Google Scholar 

  10. Forman, E.J., Hong, K.H., Treff, N.R., and Scott, R.T., Comprehensive chromosome screening and embryo selection: moving toward single euploid blastocyst transfer, Semin. Reprod. Med., 2012, vol. 30, no. 3, pp. 236–242. https://doi.org/10.1055/s-0032-1311526

    Article  PubMed  Google Scholar 

  11. Forman, E.J., Upham, K.M., Cheng, M., Zhao, T., Hong, K.H., Treff, N.R., and Scott, R.T.Jr., Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer, Fertil. Steril., 2013, vol. 100, no. 3, pp. 718–724. https://doi.org/10.1016/j.fertnstert.2013.04.043

    Article  PubMed  Google Scholar 

  12. Franasiak, J.M., Forman, E.J., Hong, K.H., Werner, M.D., Upham, K.M., Treff, N.R., and Scott, R.T. Jr., The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening, Fertil. Steril., 2014, vol. 101, no. 3, pp. 656–663. https://doi.org/10.1016/j.fertnstert.2013.11.004

    Article  PubMed  Google Scholar 

  13. Gianaroli, L., Magli, M.C., Ferraretti, A.P., Fiorentino, A., Garrisi, J., and Munné, S., Preimplantation genetic diagnosis increases the implantation rate in human in vitro fertilization by avoiding the transfer of chromosomally abnormal embryos, Fertil. Steril., 1997, vol. 68, no. 6, pp. 1128–1131. https://doi.org/10.1016/s0015-0282(97)00412-3

    CAS  Article  PubMed  Google Scholar 

  14. Gleicher, N., Vidali, A., Braverman, J., Kushnir, V.A., Barad, D.H., Hudson, C., Wu, Y.G., Wang, Q., Zhang, L., and Albertini, D.F., Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos, Reprod. Biol. Endocrinol., 2016, vol. 14, no. 1, art. ID 54. https://doi.org/10.1186/s12958-016-0193-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greco, E., Litwicka, K., Minasi, M.G., Cursio, E., Greco, P.F., and Barillari, P., Preimplantation genetic testing: where we are today, Int. J. Mol. Sci., 2020, vol. 21, no. 12, art. ID 4381. https://doi.org/10.3390/ijms21124381

    CAS  Article  PubMed Central  Google Scholar 

  16. Hodes-Wertz, B., Grifo, J., Ghadir, S., Kaplan, B., Laskin, C.A., Glassner, M., and Munné, S., Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos, Fertil. Steril., 2012, vol. 98, no. 3, pp. 675–680. https://doi.org/10.1016/j.fertnstert.2012.05.025

    Article  PubMed  Google Scholar 

  17. Homer, H.A., Preimplantation genetic testing for aneuploidy (PGT-A): The biology, the technology and the clinical outcomes, Aust. N. Z. J. Obstet. Gynaecol., 2019, vol. 59, no. 2, pp. 317–324. https://doi.org/10.1111/ajo.12960

    Article  PubMed  Google Scholar 

  18. Leth-Moller, K., Hammer, Jagd, S., and Humaidan, P., The luteal phase after GnRHa trigger-understanding an enigma, Int. J. Fertil. Steril., 2014, vol. 8, no. 3, pp. 227–234

    PubMed  PubMed Central  Google Scholar 

  19. Liu, X.Y., Fan, Q., Wang, J., Li, R., Xu, Y., Guo, J., Wang, Y.Z., Zeng, Y.H., Ding, C.H., Cai, B., Zhou, C.Q., and Xu, Y.W., Higher chromosomal abnormality rate in blastocysts from young patients with idiopathic recurrent pregnancy loss, Fertil. Steril., 2020, vol. 113, no. 4, pp. 853–864. https://doi.org/10.1016/j.fertnstert.2019.11.016

    CAS  Article  PubMed  Google Scholar 

  20. Masbou, A.K., Friedenthal, J.B., McCulloh, D.H., McCaffrey, C., Fino, M.E., Grifo, J.A., and Licciardi, F., A Comparison of pregnancy outcomes in patients undergoing donor egg single embryo transfers with and without preimplantation genetic testing, Reprod. Sci., 2019, vol. 26, no. 12, pp. 1661–1665. https://doi.org/10.1177/1933719118820474

    Article  PubMed  Google Scholar 

  21. Masschaele, T., Gerris, J., Vandekerckhove, F., and De Sutter, P., Does transferring three or more embryos make sense for a well-defined population of infertility patients undergoing IVF/ICSI?, Facts Views Vis. Obstet. Gynaecol., 2012, vol. 4, no. 1, pp. 51–58

    CAS  Google Scholar 

  22. Maxwell, S.M. and Grifo, J.A., Should every embryo undergo preimplantation genetic testing for aneuploidy? A review of the modern approach to in vitro fertilization, Best Pract. Res. Clin. Obstet. Gynaecol., 2018, vol. 3, pp. 38–47. https://doi.org/10.1016/j.bpobgyn.2018.07.005

    Article  Google Scholar 

  23. Mersereau, J.E., Pergament, E., Zhang, X., and Milad, M.P., Preimplantation genetic screening to improve in vitro fertilization pregnancy rates: a prospective randomized controlled trial, Fertil. Steril., 2008, vol. 90, no. 4, pp. 1287–1289. https://doi.org/10.1016/j.fertnstert.2007.08.010

    Article  PubMed  Google Scholar 

  24. Meyer, L.R., Klipstein, S., Hazlett, W.D., Nasta, T., Mangan, P., and Karande, V.C., A prospective randomized controlled trial of preimplantation genetic screening in the “good prognosis” patient, Fertil. Steril., 2009, vol. 91, no. 5, pp. 1731–1738. https://doi.org/10.1016/j.fertnstert.2008.02.162

    Article  PubMed  Google Scholar 

  25. Munné, S., Lee, A., Rosenwaks, Z., Grifo, J., and Cohen, J., Fertilization and early embryology: Diagnosis of major chromosome aneuploidies in human preimplantation embryos, Hum. Reprod., 1993, vol. 8, no. 12, pp. 2185–2191. https://doi.org/10.1093/oxfordjournals.humrep.a138001

    Article  PubMed  Google Scholar 

  26. Munné, S., Velilla, E., Colls, P., Garcia Bermudez, M., Vemuri, M.C., Steuerwald, N., Garrisi, J., and Cohen, J., Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production, Fertil. Steril., 2005, vol. 84, no. 5, pp. 1328–1334. https://doi.org/10.1016/j.fertnstert.2005.06.025

    Article  PubMed  Google Scholar 

  27. Papler, T.B., Bokal, E.V., Maver, A., and Lovrečić, L., Specific gene expression differences in cumulus cells as potential biomarkers of pregnancy, Reprod. BioMed. Online, 2015, vol. 30, no. 4, pp. 426–433. https://doi.org/10.1016/j.rbmo.2014.12.011

    CAS  Article  Google Scholar 

  28. Practice Committee of the American Society for Reproductive Medicine, Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline, Fertil. Steril., 2016, vol. 106, no. 7, pp. 1634–1647. https://doi.org/10.1016/j.fertnstert.2016.08.048

    Article  Google Scholar 

  29. Rubio, C., Bellver, J., Rodrigo, L., Bosch, E., Mercader, A., Vidal, C., De los Santos, M.J., Giles, J., Labarta, E., Domingo, J., Crespo, J., Remohí, J., Pellicer, A., and Simón, C., Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials, Fertil. Steril., 2013, vol. 99, no. 5, pp. 1400–1407. https://doi.org/10.1016/j.fertnstert.2012.11.041

    Article  PubMed  Google Scholar 

  30. Rubio, C., Bellver, J., Rodrigo, L., Castillón, G., Guillén, A., Vidal, C., Giles, J., Ferrando, M., Cabanillas, S., Remohí, J., Pellicer, A., and Simón, C., In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study, Fertil. Steril., 2017, vol. 107, no. 5, pp. 1122–1129. https://doi.org/10.1016/j.fertnstert.2017.03.011

    Article  PubMed  Google Scholar 

  31. Sahin, L., Bozkurt, M., Sahin, H., Gürel, A., and Yumru, A.E., Is preimplantation genetic diagnosis the ideal embryo selection method in aneuploidy screening?, Kaohsiung J. Med. Sci., 2014, vol. 30, no. 10, pp. 491–498. https://doi.org/10.1016/j.kjms.2014.05.008

    Article  PubMed  Google Scholar 

  32. Sato, T., Sugiura-Ogasawara, M., Ozawa, F., Yamamoto, T., Kato, T., Kurahashi, H., Kuroda, T., Aoyama, N., Kato, K., Kobayashi, R., Fukuda, A., Utsunomiya, T., Kuwahara, A., Saito, H., Takeshita, T., and Irahara, M., Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure, Hum. Reprod., 2019, vol. 34, no. 12, pp. 2340–2348. https://doi.org/10.1093/humrep/dez229

    Article  PubMed  Google Scholar 

  33. Schatten, H., Sun, Q.Y., and Prather, R., The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility, Reprod. Biol. Endocrinol., 2014, vol. 12, art. ID 111. https://doi.org/10.1186/1477-7827-12-111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Schmutzler, A.G., Theory and practice of preimplantation genetic screening (PGS), Eur. J. Med. Genet., 2019, vol. 62, no. 8, art. ID 103670. https://doi.org/10.1016/j.ejmg.2019.103670

    Article  PubMed  Google Scholar 

  35. Schmutzler, A.G., Acar-Perk, B., Weimer, J., Salmassi, A., Sievers, K., Tobler, M., Mettler, L., Jonat, W., and Arnold, N., Oocyte morphology on day 0 correlates with aneuploidy as detected by polar body biopsy and FISH, Arch. Gynecol. Obstet., 2014, vol. 289, no. 2, pp. 445–450. https://doi.org/10.1007/s00404-013-2944-3

    Article  PubMed  Google Scholar 

  36. Schoolcraft, W.B., Katz-Jaffe, M.G., Stevens, J., Rawlins, M., and Munné, S., Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial, Fertil. Steril., 2009, vol. 92, no. 1, pp. 157–162. https://doi.org/10.1016/j.fertnstert.2008.05.029

    Article  PubMed  Google Scholar 

  37. Scott, R.T. Jr., Upham, K.M., Forman, E.J., Hong, K.H., Scott, K.L., Taylor, D., Tao, X., and Treff, N.R., Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial, Fertil. Steril., 2013, vol. 100, no. 3, pp. 697–703. https://doi.org/10.1016/j.fertnstert.2013.04.035

    Article  PubMed  Google Scholar 

  38. Sciorio, R., Thong, D., Thong, K.J., and Pickering, S.J., Clinical pregnancy is significantly associated with the blastocyst width and area: a time-lapse study, J. Assisted Reprod. Genet., 2021. https://doi.org/10.1007/s10815-021-02071-x

  39. Sills, E.S., Li, X., Frederick, J.L., Khoury, C.D., and Potter, D.A., Determining parental origin of embryo aneuploidy: analysis of genetic error observed in 305 embryos derived from anonymous donor oocyte IVF cycles, Mol. Cytogenet., 2014, vol. 7, no. 1, art. ID 68. https://doi.org/10.1186/s13039-014-0068-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Staessen, C., Platteau, P., Van Assche, E., Michiels, A., Tournaye, H., Camus, M., Devroey, P., Liebaers, I., and Van Steirteghem, A., Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial, Hum. Reprod., 2004, vol. 19, no. 12, pp. 2849–2858. https://doi.org/10.1093/humrep/deh536

    Article  PubMed  Google Scholar 

  41. Verpoest, W., Staessen, C., Bossuyt, P.M., Goossens, V., Altarescu, G., Bonduelle, M., Devesa, M., Eldar-Geva, T., Gianaroli, L., Griesinger, G., Kakourou, G., Kokkali, G., Liebenthron, J., Magli, M.C., Parriego, M., Schmutzler, A.G., Tobler, M., van der Ven, K., Geraedts, J., and Sermon, K., Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: a randomized clinical trial, Hum. Reprod., 2018, vol. 33, no. 9, pp. 1767–1776. https://doi.org/10.1093/humrep/dey262

    CAS  Article  PubMed  Google Scholar 

  42. Yang, X., Huang, R., Wang, Y.-F., and Liang, X.-Y., Pituitary suppression before frozen embryo transfer is beneficial for patients suffering from idiopathic repeated implantation failure, J. Huazhong Univ. Sci. Technol., Med. Sci., 2016, vol. 36, no. 1, pp. 127–131. https://doi.org/10.1007/s11596-016-1554-2

    CAS  Article  Google Scholar 

  43. Yang, Z., Liu, J., Collins, G.S., Salem, S.A., Liu, X., Lyle, S.S., Peck, A.C., Sills, E.S., and Salem, R.D., Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study, Mol. Cytogenet., 2012, vol. 5, no. 1, art. ID 24. https://doi.org/10.1186/1755-8166-5-24

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng, Y.M., Wang, N., Li, L., and Jin, F., Whole genome amplification in preimplantation genetic diagnosis, J. Zhejiang Univ., Sci., B., 2011, vol. 12, no. 1, pp. 1–11. https://doi.org/10.1631/jzus.B1000196

    Article  Google Scholar 

Download references

Funding

This study did not receive any certain grant from financial organs in governmental, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Semikhodskii or M. Ismayilova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. In compliance with the current legislation of the Republic of Azerbaijan prior informed written consent for the use of experimental results for scientific purposes and publication in an anonymized fashion was obtained from all participants of the study.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semikhodskii, A., Ismayilova, M. Detection of Chromosomal Aneuploidies in Human Blastomeres Using FISH Increases the Success of IVF by Improving the Chances of Embryo Progress to Delivery. Cytol. Genet. 56, 209–217 (2022). https://doi.org/10.3103/S0095452722030124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722030124

Keywords:

  • FISH
  • PGT-A
  • IVF
  • ART
  • aneuploidy
  • recurring pregnancy loss
  • idiopathic infertility
  • IVF failure