Skip to main content

Improving Salt Tolerance in Trifolium alexandrinum L. through Interspecific Hybridization, Polyploidization and Induced Variations

Abstract

Soil salinity significantly affects crop productivity throughout the world. Improving intrinsic salt tolerance of the plants may effectively improve productivity. In vitro evaluation is an effective and quick method allowing utilization of inter and intra genotypic variation in a controlled environment. Trifolium alexandrinum is one of the most important winter season annual fodder crop in India and Mediterranean region. Diverse T. alexandrinum genotypes were evaluated in vitro for salt tolerance. Intra and inter genotypic variability was observed for response to varying levels of salt stress at different growth stages. Germination was adversely affected with increasing salt stress among genotypes, however, three genotypes EC 318954, ISH 34/41, ISH 34/8Y showed 75–80% germination even at 0.75% salt level. High seedling mortality was observed at higher salinity levels except EC 318954 which showed low mortality at 0.50 and 0.75% salinity. Seedlings with normal root growth ranged from 5 to 80% at 0.25 and 0.5% salinity. Based on average Salinity Susceptibility Index (SSI) the ISH progenies were most tolerant (SSI = 0.895) for germination as well as radicle and pumule length, number of leaves and plant weight (SSI = 0.91). ISH progenies, tetraploids, Fahli ecotype and multifoliate showed better tolerance. The study confirmed successful transfer of salinity tolerance from T. apertum to T. alexandrinum. The petiole and hypocotyl explants at moderate salinity and petiole explants at high salinity responded well for in vitro callusing. Calli developed at 0.75% salinity can be a source of developing tolerant lines through natural cell line selection. Embryo culture response of Mescavi genotypes was better than Fahli and Saidi genotypes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. Abogadallah, G.M., Sensitivity of Trifolium alexandrinum L. to salt stress is related to the lack of long-term stress-induced gene expression, Plant Sci., 2010, vol. 178, no. 6, pp. 491–500. https://doi.org/10.1016/j.plantsci.2010.03.008

    CAS  Article  Google Scholar 

  2. Al-Ansari, E.M., Salinity tolerance during germination in two arid-land varieties of wheat (Triticum aestivum L.), Seed Sci. Technol., 2003, vol. 31, pp. 597–603.

    Article  Google Scholar 

  3. Al-Khatib, M.M., McNeilly, T., Collins, J.C., Between and within cultivars variability in salt tolerance in Lucerne (Medicago sativa L.), Genet. Resour. Crop Evol., 1994, vol. 41, no. 3, pp. 156–164.

    Article  Google Scholar 

  4. Ashraf, M. and Orooj, A., Salt stress effects on growth, ion accumulation and seed oil content in an arid zone medicinal plant ajwain (Trachyspermum ammi [L.] Sprague), J. Arid Environ., 2006, vol. 64, no. 2, pp. 209–220. https://doi.org/10.1016/j.jaridenv.2005.04.015

    Article  Google Scholar 

  5. Ashraf, M., McMeilly, T., and Bradshaw, A.D., The response to NaCl and ionic content of selected salt-tolerant and normal lines of three legume forage species in sand culture, New Phytol., 1986, vol.104, pp. 463–471.

    CAS  Article  Google Scholar 

  6. Ballhorn, D.J. and Elias, J.D., Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions, Ann. Bot., 2014vol. 114, no. 2, pp. 357–366.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Barakat, M.N. and Abdel-Latif, T.H., In vitro selection of wheat callus tolerant to high levels of salts and plants regeneration, Euphytica, 1996, vol. 91, pp. 127–140.

    Article  Google Scholar 

  8. Bayuelo-Jimenez, J.S., Debouck, D.G., and Lynch, J.P., Salinity tolerance in Phaseolus species during Early Vegetative Growth, Crop Sci., 2002, vol. 42, no. 6, pp. 2184–2192.

    Article  Google Scholar 

  9. Burgutin, A.B., Butenko, R.G., Kaurov, B.A., and Iddegodia, N., In vitro selection of potato for tolerance to sodium chloride, Russ. J. Plant Physiol., 1996, vol. 43, pp. 524 –531.

    CAS  Google Scholar 

  10. Chaudhary, M.T., Wainwright, S.T., and Merett, M.J., Comparative NaCl tolerance of Lucerne plants regenerated from salt selected suspension cultures, Plant Sci., 1996, vol. 114, no. 2, pp. 221–232.

    CAS  Article  Google Scholar 

  11. Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Perez, S.C., and Piernik, A., Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes, Agronomy, 2020, vol. 10, no. 6, art. ID 859. https://doi.org/10.3390/agronomy10060859

    CAS  Article  Google Scholar 

  12. Dunkan, R.R., Wakson, R.M., and Nabors, M.W., In vitro Screening and field evaluation of tissue cultured regenerated sorghum (Sorghum bicolor. L), Euphytica, 1995, vol. 85, pp. 373–380.

    Article  Google Scholar 

  13. Fisher, R.A. and Maurer, R., Drought resistance in spring wheat cultivars. I. Grain yield response, Aust. J. Agric. Res., 1978, vol. 29, pp. 897–912.

    Article  Google Scholar 

  14. Foolad, M.R. and Jones, R.A., Mapping salt tolerance genes in tomato (Lycopersicon esculentum) using trait based marker analysis, Theor. Appl. Genet., 1993, vol. 87, pp. 184–192.

    CAS  PubMed  Article  Google Scholar 

  15. Ghassemabadi, H.F., Eisvand, H.R., and Akbarpour, O.A., Evaluation of salinity tolerance of different clover species at germination and seedling stages, Iran. J. Plant Physiol., 2018, vol. 8, no. 3, pp. 2469–2477.

    Google Scholar 

  16. Hasegawa, P.M., Bressan, R.A., Nelson, D.E., Samaras, Y., and Rhodes, Y., Tissue culture in the improvement of salt tolerance in plants, in Soil Mineral Stresses: Approaches to Crop Improvement, Yeo, A.R. and Flowers, T.J., Eds., Berlin: Springer-Verlag, 1995.

    Google Scholar 

  17. Huoying, C., Jianhua, Z. and Xiaoning, Z., In vitro selection of NaCl tolerance mutant of Lycopersicon esculentum Mill., J. Shanghai Agric. Coll., 2002, vol. 20, pp. 1–6.

    Google Scholar 

  18. Isayenkov, S.V., Physiological and molecular aspects of salt stress in plants, Cytol. Genet., 2012, vol. 46, pp. 302–318. https://doi.org/10.3103/S0095452712050040

    Article  Google Scholar 

  19. Isayenkov, S.V., Genetic sources for the development of salt tolerance in crops, Plant Growth Regul., 2019, vol. 89, no. 1, pp. 1–17. https://doi.org/10.1007/s10725-019-00519-w

    CAS  Article  Google Scholar 

  20. Isayenkov, S.V. and Maathuis, F.J.M., Plant salinity stress: many unanswered questions remain, Front. Plant Sci., 2019, vol. 10, art. ID 80. https://doi.org/10.3389/fpls.2019.00080

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaushal, P., Malaviya, D.R., Mahanta, S.K., and Roy, A.K., Nutritive value of diploid and improved tetraploid lines of Egyptian clover (Trifolium alexandrinum) at different cutting stages, Indian J. Anim. Sci., 2003, vol. 73, no. 8, pp. 940–944.

    Google Scholar 

  22. Kaushal, P., Malaviya, D.R., Roy, A.K., Kumar, B., and Tiwari, A., Trifolium alexandrinum x T. resupinatum – interspecific hybrids developed through embryo rescue, Plant Cell, Tissue Organ Cult., 2005, vol. 83, pp. 137–144.

    Article  Google Scholar 

  23. Kaur, A., Kaur, K.P., Kalia, A., Rani, U., Kahlon, J.G., Sharma, R., Malaviya, D., Kapoor, R., and Sandhu, J.S., Generation of interspecific hybrids between Trifolium vesiculosum and T. alexandrinum using embryo rescue, Euphytica, 2017, vol. 213, art. ID. 253. https://doi.org/10.1007/s10681-017-2042-x

  24. Kazemeini, S.A., Pirasteh-Anosheh, H., Basirat, A., Akram, N.A., Salinity tolerance threshold of berseem clover (Trifolium alexandrinum) at different growth stages, Pak. J. Bot., 2018, vol. 50, no. 5, pp. 1675–1680.

    CAS  Google Scholar 

  25. Kintzios, S.E., Barberaki, M., Aivalakis, G., Drossopoulos, J., and Holevas, C.D., In vitro morphogenetic responses of mature wheat embryos to different NaCl concentrations and growth regulator treatments, Plant Breed., 1997, vol. 116, pp. 113–118.

    CAS  Article  Google Scholar 

  26. Mandal, A.K., Reddy, G.P.O., and Ravisankar, T., Digital database of salt affected soils in India using Geographic Information System, J. Soil Salinity Water Qual., 2011, vol. 3, no. 1, pp. 16–29.

    Google Scholar 

  27. Malaviya, D.R., Roy, A.K., Kaushal, P., Kumar, B., and Tiwari, A., Development and characterization of interspecific hybrids of Trifolium alexandrinum × T. apertum using embryo rescue, Plant Breed., 2004, vol. 123, pp. 536–542.

    CAS  Article  Google Scholar 

  28. Malaviya, D.R., Kumar, B., Roy, A.K., Kaushal, P., and Tiwari, A., Estimation of variability for isozymes of five enzyme systems among wild and cultivated species of Trifolium, Genet. Resour. Crop Evol., 2005, vol. 52, pp. 967–976.

    CAS  Article  Google Scholar 

  29. Malaviya, D.R., Roy, A.K., Kaushal, P., Chakraborti, M., Yadav, A., Khare, A., Dhir, R., Khairnar, D., and George, G.P., Interspecific compatibility barriers, development of interspecific hybrids through embryo rescue and lineage of Trifolium alexandrinum (Egyptian clover)—important tropical forage legume, Plant Breed., 2018, vol. 137, no. 4, pp. 655–672. https://doi.org/10.1111/pbr.12616

    CAS  Article  Google Scholar 

  30. Malaviya, D.R., Raman, H., Dear, B.S., Raman, R., Roy, A.K., Kaushal, P., Chandra, A., and Hughes, S.J., Genetic diversity and lineage based on SSR markers of two genomic resources among Trifolium collections held within the Australian Pastures Genebank, Open J. Genet., 2019, vol. 9, no.1, pp. 1–14.

    CAS  Article  Google Scholar 

  31. Malaviya, D.R., Roy, A.K., Kaushal, P., Yadav, A., and Pandey, D.K., Complementary gene interaction and xenia effect controls the seed coat colour in interspecific cross between Trifolium alexandrinum and T. apertum, Genetica, 2019, vol. 147, no. 2, pp. 197–203.

    CAS  PubMed  Article  Google Scholar 

  32. Malaviya, D.R., Roy, A.K., Anand, A., Choubey, R.N., Baig, M.J., Dwivedi, K., Kushwaha, N., and Kaushal, P., Salinity tolerance of Panicum maximum genotypes for germination and seedling growth, Range Manage. Agroforestry, 2019, vol. 40, no. 2, pp. 227–235.

    Google Scholar 

  33. Malaviya, D.R., Roy, A.K., Kaushal, P., Pathak, S., and Kalendar, R., Phenotype study of multifoliolate leaf formation in Trifolium alexandrinum L., PeerJ, 2021, vol. 9, art. ID e10874. https://doi.org/10.7717/peerj.10874

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mirza, J.I. and Tariq, R., The growth and nodulation of Trifolium alexandrinum as affected by salinity, Biol. Plant., 1993, vol. 35, no. 2, pp. 289–292.

    CAS  Article  Google Scholar 

  35. Moore, G., Soilguide: a Handbook for Understanding and Managing Agricultural Soils, Bulletin 4343, Perth: Dep. Agric., 1998.

  36. Munns, R., Comparative physiology of salt and water stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.

    CAS  PubMed  Article  Google Scholar 

  37. Murashinge, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue culture, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  Google Scholar 

  38. Pakar, N., Pirasteh-Anosheh, H., Emam, Y., and Pessarakli, M., Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions, J. Plant Nutr., 2016, vol. 39, no. 10, pp. 1372–1379.

    CAS  Article  Google Scholar 

  39. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Saf., 2005, vol. 60, no. 3, pp. 324–349.

    CAS  PubMed  Article  Google Scholar 

  40. Pathak, S., Malaviya, D.R., Roy, A.K., Dwivedi, K., and Kaushal, P., Multifoliate leaf formation in induced tetraploids of Trifolium alexandrinum L., Cytologia, 2015, vol. 80, no. 1, pp. 59–66.

    Article  Google Scholar 

  41. Philips, G.C. and Collins, G.B., Red clovers and other forage legumes, in Hand Book of Plant Cell Culture, Sharp, W.R., Evans, D.A., Ammirato, P.V., and Yamada, Y., Eds., New York: Macmillan & Co, 1984, vol. 2, pp. 169–210.

    Google Scholar 

  42. Pirasteh-Anosheh, H., Emam, Y., and Sepaskhah, A.R., Improving barley performance by proper foliar applied salicylic-acid under saline conditions, Int. J. Plant Prod., 2015, vol. 9, no. 3, pp. 467–486.

    Google Scholar 

  43. Rogers. M.E. and Nobel, C.L., Breeding for increased salt tolerance in irrigated pasture legume, in Management of Soil Salinity in South East Australia, Humphrey, E., Murihead, W.A., Lelji, A., Eds., Proceedings of a symposium held at Albury, New South Wales: Australian Society of Soil Sciences, 1990, pp. 191–200.

  44. Roy, A.K., Malaviya, D.R., and Kaushal, P., Production potential of induced tetraploid lines in comparison to diploid lines of Trifolium alexandrinum, Forage Res., 1998, vol. 24, no. 1, pp. 7–11.

    Google Scholar 

  45. Roy, A.K., Malaviya, D.R., Kaushal, P., Kumar, B., and Tiwari, A., Interspecific hybridization of T. alexandrinum with T. constantinopolitanum using embryo rescue, Plant Cell Rep., 2004, vol. 22, pp. 605–610.

    Article  CAS  Google Scholar 

  46. Roy, A.K., Malaviya, D.R., and Kaushal, P., Pollination behaviour among different breeding populations of Egyptian clover, Plant Breed., 2005, vol. 124, pp. 171–175.

    Article  Google Scholar 

  47. Roy, A.K., Malaviya, D.R., and Kaushal, P., Genetic improvement of fodder legumes especially dual purpose pulses, Indian J. Genet. Plant Breed., 2016, vol. 76, no. 4, pp. 608–625.

    Article  Google Scholar 

  48. Roy, A.K., Malaviya, D.R., Anand, A., Choubey, R.N., Baig, M.J., Dwivedi, K., and Kaushal, P., Salinity tolerance of Avena sativa fodder genotypes, Trop. Grassl.-Forrajes Tropicales, 2021, vol. 9, no. 1, pp. 109–119.

    Article  Google Scholar 

  49. Shakur, A.B., Kay, N.A., Stevens, D.P., and Skibinski, D.O.F., Salt tolerance in natural populations of T. repens., New Phytol., 1988, vol. 109, pp. 483–490.

    Article  Google Scholar 

  50. Verma, P., Chandra, A., Roy, A.K., Malaviya, D.R., Kaushal, P., Pandey, D., and Bhatia, S., Development, characterization and cross-species transferability of genomic SSR markers in Berseem (Trifolium alexandrinum L.), an important multi-cut annual forage legume, Mol. Breed., 2015, vol. 35, no. 1, p. 23.

    Article  CAS  Google Scholar 

  51. Winicov, I., Characterization of rice (Oryza sativa L.) plants regenerated from salt tolerant cell lines, Plant Sci., 1996, vol. 113, no. 1, pp. 105–111.

    CAS  Article  Google Scholar 

  52. Winter, E. and Lauchli, A., Salt tolerance of Trifolium alexandrinum L. I. Comparison of the salt response of T. alexandrinum and T. Pratense, Aust. J. Plant Physiol., 1982, vol. 9, no. 2, pp. 221–226.

    CAS  Google Scholar 

  53. Zhao, R., Gao, S., Qiao, Y., Zhu, H., and Bi, Y., Studies on the application of another culture in salt tolerance breeding in wheat (Triticum aestivum), Acta Agron. Sin., 1995, vol. 21, pp. 230–234.

    Google Scholar 

  54. Zhu, J.K., Genetic analysis of plant salt tolerance using Arabidopsis, Plant Physiol., 2000, vol. 124, no. 3, pp. 941–948. https://doi.org/10.1104/pp.124.3.941

  55. Zouhaier, B., Mariem, M., Mokded, R., Rouached, A., Alsane, K., Chedly, A., Abderrazek, S., and Abdallah, A., Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels, J. Plant Res., 2016, vol. 129, no. 3, pp. 423–434. https://doi.org/10.1007/s10265-016-0791-6

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

Authors are thankful to Indian Council of Agricultural Research, India for support to carry out the research.

Author information

Authors and Affiliations

Authors

Contributions

DRM, AKR and PK designed and guided research; KD reviewed the literature, conducted experiment, recorded data and analysed, prepared the base draft; SP helped in data analysis and review; DRM prepared the draft manuscript. All authors suggested improvement and approved the final draft for submission.

Corresponding author

Correspondence to D. R. Malaviya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not Applicable.

CONSENT FOR PUBLICATION

Not Applicable.

AVAILABILITY OF DATA AND MATERIAL

Not Applicable.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, K., Roy, A.K., Kaushal, P. et al. Improving Salt Tolerance in Trifolium alexandrinum L. through Interspecific Hybridization, Polyploidization and Induced Variations. Cytol. Genet. 56, 301–311 (2022). https://doi.org/10.3103/S0095452722030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722030021

Keywords:

  • Egyptian clover
  • ecotypes
  • tetraploid
  • interspecific cross
  • multifoliate