Skip to main content
Log in

Investigation of Putative Functional SNPs of Human HAT1 Protein: A Comprehensive “in silico” Study

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Histone modifications such as acetylation play a fundamental role in DNA packaging and genome regulation and HAT1 protein is involved in gene transcription, DNA repair, and chromatin assembly. Single nucleotide polymorphisms (SNPs) in the human HAT1 gene may be correlated with human diseases such as cancers, inflammatory, and neuropsychiatric diseases. Hence, identification of putative functional SNPs which affect structure and/or function of protein is important for understanding the molecular mechanisms of pathogenesis of diseases and discovery of potential therapeutic agents. In this study, numerous bioinformatics tools were used to determine the most damaging nsSNPs for the function and/or structure of HAT1 protein. In silico analysis was carried out by different algorithmic programs including SIFT, PolyPhen-2, PROVEAN, SNPs&GO, and PhD-SNP. Our study concludes that mutation of Leucine → Arginine at position 416 (rs199575205) is major deleterious mutation which may lead to damage of HAT1 protein. Analyis of HAT1 gene variants by computational tools is a first and comprehensive in silico study. Future in vitro and in vivo studies should include this nsSNP as main target for the development of therapeutics for diseases that are associated with this missense polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adzhubei, I., Jordan, D.M., and Sunyaev, S.R., Predicting functional effect of human UNIT 7.20 missense mutations using PolyPhen-2, Curr. Protoc. Hum. Genet., 2013, vol. 76, pp. 7.20.1–7.20.41. https://doi.org/10.1002/0471142905.hg0720s76

  2. Annan, R.S. and Zappacosta, F., Protein posttranslational modifications: phosphorylation site analysis using mass spectrometry, Methods Biochem. Anal., 2005, vol. 45, pp. 85–106.

    CAS  PubMed  Google Scholar 

  3. Arshad, M., Bhatti, A., and John, P., Identification and in silico analysis of functional SNPs of human TAGAP protein: a comprehensive study, PLoS One, 2018, vol. 13. e0188143. https://doi.org/10.1371/journal.pone.0188143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Res., 2016, vol. 8, pp. W344–W350. https://doi.org/10.1093/nar/gkw408

    Article  CAS  Google Scholar 

  5. Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., et al., ConSeq: the identification of functionally and structurally important residues in protein sequences, Bioinformatics, 2004, vol. 20, pp. 1322–1324. https://doi.org/10.1093/bioinformatics/bth070

    Article  CAS  PubMed  Google Scholar 

  6. Bhagwat, M., Searching NCBI’s dbSNP database, Curr. Protoc. Bioinformatics, 2010, chapter: unit 1.19. https://doi.org/10.1002/0471250953.bi0119s32

  7. Capriotti, E., Fariselli, P., and Casadio, R., I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure, Nucleic Acids Res., 2005, vol. 33, pp. W306–W310. https://doi.org/10.1093/nar/gki375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Capriotti, E., Calabrase, R., Fariselli, P., Martelli, P.L., Altman, R.B., and Casadio, R., WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation, BMC Genomics, 2013, vol. 14, suppl. 3, p. S6.

    Article  Google Scholar 

  9. Capriotti, E. and Fariselli, P., PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants, Nucleic Acids Res., 2017, vol. 454, pp. W247–W252. https://doi.org/10.1093/nar/gkx369

    Article  CAS  Google Scholar 

  10. Carugo, O. and Pongor, S., A normalized root-mean-square distance for comparing protein three-dimensional structures, Protein Sci., 200, vol. 110, pp. 1470–1473. https://doi.org/10.1110/ps.690101

  11. Chen, R., Davydov, E.V., Sirota, M., and Butte, A.J., Non-synonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association, PLoS One, 2010, vol. 5, art. e13574. https://doi.org/10.1371/journal.pone.0013574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, Y. and Chan, A.P., PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels, Bioinformatics, 2015, vol. 31, pp. 2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colovos, C. and Yeates, T., ERRAT: an empirical atom-based method for validating protein structures, Protein Sci., 1993, vol. 2, pp. 1511–1519.

    Article  CAS  Google Scholar 

  14. Deng, W., Wang, C., Zhang, Y., Xu, Y., Zhang, S., Liu, X., et al., GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences, Sci. Rep., 2016, vol. 6, p. 39787.

    Article  CAS  Google Scholar 

  15. Du, K., Sharma, M., and Lukacs, G.L., The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR, Nat. Struct. Mol. Biol., 2005, vol. 12, pp. 17–25. https://doi.org/10.1038/nsmb882

    Article  CAS  PubMed  Google Scholar 

  16. Gruber, J.J., Geller, B., Lipchik, A.M., Chen, J., Salahudeen, A.A., and Ram, A.N., HAT1 drives a gene-metabolite circuit that links nutrient metabolism to histone production, bioRxiv, 2019. https://doi.org/10.1101/664615

  17. Hu, Z., Zhou, J., Jiang, J., Yuan, J., Zhang, Y., and Wei, X., Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment, Nat. Commun., 2019, vol. 10, p. 733. https://doi.org/10.1038/s41467-019-08554-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin, X., Tian, S., and Li, P., Histone acetyltransferase 1 promotes cell proliferation and induces cisplatin resistance in hepatocellular carcinoma, Oncol. Res., 2017, vol. 25, pp. 939–946. https://doi.org/10.3727/096504016X14809827856524

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaur, T., Khakur, T., Singh, J., Kamboj, S.S., and Kaur, M., Identification of functional SNPs in human LGALS3 gene by in silico analyses, Egypt J. Med. Hum., 2017, vol. 18, pp. 321–328. https://doi.org/10.1016/j.ejmhg.2017.02.001

    Article  Google Scholar 

  20. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J., The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc., 2015, vol. 10, pp. 845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kucukkal, T.G., Petukh, M., Li, L., and Alexov, E., Structural and physico- chemical effects of disease and non-disease nsSNPs on proteins, Curr. Opin. Struct. Biol., 2015, vol. 32, pp. 18–24. https://doi.org/10.1016/j.sbi.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar, P., Henikoff, S., and Ng, P.C., Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc., 2009, vol. 4, pp. 1073–1081. https://doi.org/10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J., Son, M.J., Son, C.Y., Jeong, G.H., Lee, K.H., and Lee, K.S., Genetic variation and autism: a field synopsis and systematic meta-analysis, Brain Sci., 2020, vol. 10, p. 692. https://doi.org/10.3390/brainsci10100692

    Article  CAS  PubMed Central  Google Scholar 

  24. Li, B., Krishnan, V.G., Mort, M.E., Xin, F., Kamati, K.K., Cooper, D.N., et al., Automated inference of molecular mechanisms of disease from amino acid substitutions, Bioinformatics, 2009, vol. 25, pp. 2744–2750. https://doi.org/10.1093/bioinformatics/btp528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayer, S., Rüdiger, S., Ang, H.C., Joerger, A.C., and Fersht, A.R., Correlation of levels of folded recombinant p53 in Escherichia coli with thermodynamic stability in vitro, J. Mol. Biol., 2007, vol. 372, pp. 268–276. https://doi.org/10.1016/j.jmb.2007.06.044

    Article  CAS  PubMed  Google Scholar 

  26. Miller, M.P. and Kumar, S., Understanding human disease mutations through the use of interspecific genetic variation, Hum. Mol. Genet., 2001, vol. 10, pp. 2319–2328. https://doi.org/10.1093/hmg/10.21.2319

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura, N., Ubiquitin system, Int. J. Mol. Sci., 2018, vol. 19, p. 1080. https://doi.org/10.3390/ijms19041080

    Article  CAS  PubMed Central  Google Scholar 

  28. Osman, M.M., Khalifa, A.S., Mutasim, A.E.Y., Massaad, S.O., Gasemelseed, M.M., Abdagader, M.A., et al., In silico analysis of single nucleotid polymorphisms (SNPs) in human FTO gene, JSM Bioinf., Genomics Proteomics, vol. 1, p. 1003.

  29. Pascovici, D., Wu, J.X., McKay, M.J., Joseph, C., Noor, Z., Kamath, K., et al., Clinically relevant post-translational modification analyses-maturing workflows and bioinformatics tools, Int. J. Mol. Sci., 2019, vol. 20, p. 16. https://doi.org/10.3390/ijms20010016

    Article  CAS  Google Scholar 

  30. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., et al., UCSF chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 2004, vol. 13, pp. 1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  31. Prabakaran, S., Lippens, G., Steen, H., and Gunawardena, J., Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding, WIREs Syst. Biol. Med., 2012, vol. 4, pp. 565–583. https://doi.org/10.1002/wsbm.1185

    Article  CAS  Google Scholar 

  32. Radivojac, P., Vacic, V., Haynes, C., Cocklin, R.R., Mohan, A., Heyen, J.W., et al., Identification, analysis and prediction of protein ubiquitination sites, Proteins, 2010, vol. 78, pp. 365–380. https://doi.org/10.1002/prot.22555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramensky, V., Bork, P., and Sunyaev, S., Human non-synonymous SNPs: server and survey, Nucleic Acids Res., 2002, vol. 30, pp. 3894–900. https://doi.org/10.1093/nar/gkf493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rattan, S.I., Derventzi, A., and Clark, B.F., Protein synthesis, posttranslational modifications, and aging, Ann. N.Y. Acad. Sci., 1992, vol. 663, pp. 48–62. https://doi.org/10.1111/j.1749-6632.1992.tb38648.x

    Article  CAS  PubMed  Google Scholar 

  35. Shaw, G., Polymorphism and single nucleotide polymorphisms (SNPs), BJU Int., 2013, vol. 112, pp. 664–665. https://doi.org/10.1111/bju.12298

    Article  PubMed  Google Scholar 

  36. Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., and Ng, P.C., SIFT web server: predicting effects of amino acid substitutions on proteins, Nucleic Acids Res., 2012, vol. 40, pp. W452–W457. https://doi.org/10.1093/nar/gks539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh, S.M., Kongari, N., Cabello-Villegas, J., and Mallela, K., Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-β aggregates, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 15069–15074. https://doi.org/10.1073/pnas.1008818107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Varga, J., Korbai, S., Neller, A., Zsindely, N., and Bodai, L., Hat1 acetylates histone H4 and modulates the transcriptional program in Drosophila embryogenesis, Sci. Rep., 2019, vol. 9, p. 17973. https://doi.org/10.1038/s41598-019-54497-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, D., Liu, D., Yuchi, J., He, F., Jiang, Y., Cai, S., et al., MusiteDeep: a deep learning based webserver for protein post-translational modification site prediction and visualization, Nucleic Acids Res., 2020, vol. 48, pp. W140–W146. https://doi.org/10.1093/nar/gkaa275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen, P.P., Shi, S.P., Xu, H.D., Wang, L.N., and Qiu, J.D., Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization, Bioinformatics, 2016, vol. 32, pp. 3107–3115. https://doi.org/10.1093/bioinformatics/btw377

    Article  CAS  Google Scholar 

  41. Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., and Yao, X., GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy, Mol. Cell Proteomics, 2008, vol. 7, pp. 1598–1608. https://doi.org/10.1074/mcp.M700574-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, X.J. and Seto, E., Lysine acetylation: codified crosstalk with other posttranslational modifications, Mol. Cell, 2008, vol. 31, pp. 449–461. https://doi.org/10.1016/j.molcel.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y., The I-TASSER Suite: protein structure and function prediction, Nat. Methods, 2015, vol. 12, pp. 7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. and Skolnick, J., TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Res., 2005, vol. 33, pp. 2302–2309. https://doi.org/10.1093/nar/gki524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study did not receive any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Avsar.

Ethics declarations

The author declares that he has no conflicts of interest. This study does not contain any experiments conducted with any samples of animals or human subjects.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avsar, O. Investigation of Putative Functional SNPs of Human HAT1 Protein: A Comprehensive “in silico” Study. Cytol. Genet. 56, 98–107 (2022). https://doi.org/10.3103/S0095452722010029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452722010029

Keywords:

Navigation