Skip to main content

Effect of Temperature Stress on the Althaea officinalis’s “Hairy” Roots Carrying the Human Interferon α2b Gene


“Hairy” roots obtained through genetic transformation of plants by Agrobacterium rhizogenes, a soil phytopathogen, are valuable producers of important secondary metabolites possessing medicinal properties as well as a useful model system for studying plant responses to impacts of unfriendly environmental conditions. This study compares a postponed response of Althaea officinalis L. “hairy” roots to the impacts of short-term cold- and high-temperature stress factors. The results obtained by the study have shown that “hairy” roots from different A. officinalis lines (individual transformational events) are characterized by different sensitivity to short-term temperature stress impacts, regardless of the transformation vectors or the presence of the human interferon(ifn)-α2b gene. High temperature caused a significant level of growth inhibition in roots of all lines, except those with the highest flavonoid content under the control conditions. On the other hand, a short-term cultivation of “hairy” roots at a low temperature did not cause growth suppression. In parallel with growth inhibition caused by a temperature increase, the activation of flavonoid synthesis, which was probably a response of plants to high temperature as a stress factor, was observed. The study has shown a strong (R2 = 0.78) linear dependence between the antioxidant activity of extracts from “hairy” roots and their flavonoid content. Thus, it is obvious that flavonoids participate in the process of response and adaptation of roots to impacts of high-temperature stress.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Agati, G., Azzarello, E., Pollastri, S., and Tattini, M., Flavonoids as antioxidants in plants: location and functional significance, Plant Sci., 2012, vol. 196, pp. 67–76.

    CAS  PubMed  Google Scholar 

  2. Boo, H.O., Chon, S.U., and Lee, S.Y., Effects of temperature and plant growth regulators on anthocyanin synthesis and phenylalanine ammonia-lyase activity in chicory (Cichorium intybus L.), J. Hortic. Sci. Biotechnol., 2006, vol. 81, pp. 478–482.

    Article  Google Scholar 

  3. Choi, S., Kwon, Y.R., Hossain, M.A., et al., A mutation in ELA1, an age-dependent negative regulator of PAP1/MYB75, causes UV- and cold stress-tolerance in Arabidopsis thaliana seedlings, Plant Sci., 2009, vol. 176, pp. 678– 686.

    CAS  Article  Google Scholar 

  4. Fini, A., Brunetti, C., Di Ferdinando, M., et al., Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants, Plant Signal. Behav., 2011, vol. 6, pp. 709–711.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Havryliuk, O., Matvieieva, N., Tashyrev, O., and Yastremskaya, L., Influence of cold stress on growth and flavonoids accumulation in Artemisia tilesii “hairy” root culture, in Agrobiodiversity for Improving Nutrition, Health and Life Quality, 2017, pp 163–167.

    Google Scholar 

  6. Matvieieva, N., Drobot, K., Duplij, V., et al., Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots, Prep. Biochem. Biotechnol., 2019, vol. 49, pp. 82–87.

    CAS  Article  PubMed  Google Scholar 

  7. Matvieieva, N.A., Generation of Tragopogon porrifolius and Althaea officinalis “hairy” roots using Agrobacterium rhizogenes, Bull. Vavilov Soc. Genet. Breeders Ukr., 2012, vol. 10, pp. 262–268.

    Google Scholar 

  8. Matvieieva, N.A., Kishchenko, O.M., Potrochov, A.O., et al., Regeneration of transgenic plants from hairy roots of Cichorium intybus L. var. Foliosum Hegi, Cytol. Genet., 2011, vol. 45, pp. 277–281.

    Article  Google Scholar 

  9. Matvieieva, N.A., Morgun, B.V., Lakhneko, O.R., et al., Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb., Plant Physiol. Biochem., 2020, vol. 152, pp. 177–183.

    CAS  Article  PubMed  Google Scholar 

  10. Matvieieva, N.A., Shachovsky, A.M., Gerasymenko, I.M., et al., Agrobacterium-mediated transformation of Cichorium intybus L. with interferon-α2b gene, Biopolym. Cell, 2009, vol. 25, pp. 120–125.

    Article  Google Scholar 

  11. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    CAS  Article  Google Scholar 

  12. Pekal, A. and Pyrzynska, K., Evaluation of aluminium complexation reaction for flavonoid content assay, Food Anal. Methods, 2014, vol. 7, pp. 1776–1782.

    Article  Google Scholar 

  13. Ramakrishna, A. and Ravishankar, G.A., Influence of abiotic stress signals on secondary metabolites in plants, Plant Signal. Behav., 2011, vol. 6, pp. 1720–1731.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Sanghera, G.S., Wani, S.H., Hussain, W., and Singh, N.B., Engineering cold stress tolerance in crop plants, Curr. Genomics, 2011, vol. 12, pp. 30–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Schulz, E., Tohge, T., Zuther, E., et al., Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana, Sci. Rep., 2016, vol. 6, art. 34027.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Schulz, E., Tohge, T., Zuther, E., et al., Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions, Plant Cell Environ., 2015, vol. 38, pp. 1658–1672.

    CAS  Article  PubMed  Google Scholar 

  17. Shamloo, M., Babawale, E.A., Furtado, A., et al., Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments, Sci. Rep., 2017, vol. 7, art. 9133.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Srivastava, S. and Srivastava, A.K., Hairy root culture for mass-production of high-value secondary metabolites, Crit. Rev. Biotechnol., 2007, vol. 27, pp. 29–43.

    CAS  Article  PubMed  Google Scholar 

  19. Wahid, A., Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts, J. Plant Res., 2007, vol. 120, pp. 219–228.

    Article  PubMed  Google Scholar 

  20. Wang, L., Tu, Y.-C., Lian, T.-W., et al., Distinctive antioxidant and antiinflammatory effects of flavonols, J. Agric. Food Chem., 2006, vol. 54, pp. 9798–9804.

    CAS  Article  PubMed  Google Scholar 

  21. Wang, S.Y. and Zheng, W., Effect of plant growth temperature on antioxidant capacity in strawberry, J. Agric. Food Chem., 2001, vol. 49, pp. 4977–4982.

    CAS  Article  PubMed  Google Scholar 

  22. Wu, G., Johnson, S.K., Bornman, J.F., et al., Growth temperature and genotype both play important roles in sorghum grain phenolic composition, Sci. Rep., 2016, vol. 6, art. 21835.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The study was supported by grant no. 27/01.2020 of the National Research Foundation of Ukraine (NRFU)—Biosynthesis of Recombinant Pharmaceutical Proteins in Plants to Counteract the Spread of Some Infectious Diseases of Viral and Bacterial Origin.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. P. Duplij.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any investigations carried out by any of the authors with the participation of animals or humans.

Additional information

Translated by N. Tarasyuk

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matvieieva, N.A., Ratushnyak, Y.I., Duplij, V.P. et al. Effect of Temperature Stress on the Althaea officinalis’s “Hairy” Roots Carrying the Human Interferon α2b Gene. Cytol. Genet. 55, 207–212 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Agrobacterium rhizogenes
  • Althaea officinalis
  • “hairy” roots
  • temperature stress
  • flavonoids
  • antioxidant activity