Skip to main content

Viruses of Wild Plants and Current Metagenomic Methods for Their Investigation

Abstract

Weeds not only reduce crop yields and alter the functioning of ecosystems but also serve as alternate hosts for pests and plant pathogens or harbor vectors and vector-borne diseases. The role of weeds as reservoirs of viral pathogens and their impact on viral epidemiology and ecology is investigated in many parts of the world. The number of reports on viruses identified in weeds and new viruses discovered in cultivated and uncultivated plants is increasing globally. The most sensitive techniques used in screening and identification of viruses are nucleic acid-based detection methods. The metagenomic strategies are new approaches for analyzing viral populations in environmental samples through nucleic acid sequencing, which will make it possible to fill the gap in our knowledge of viruses in noncultivated plants. This review presents data on weeds as reservoirs of plant viruses and on current methods for studying pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. Adams, I.P., Glover, R.H., Monger, W.A., et al., Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology, Mol. Plant Pathol., 2009, vol. 10, no. 4, pp. 537–545. https://doi.org/10.1111/j.1364-3703.2009.00545.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Al Rwahnih, M., Daubert, S., Golino, D., et al., Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus, Virology, 2009, vol. 387, no. 2, pp. 395–401. https://doi.org/10.1016/j.virol.2009.02.028

    CAS  Article  PubMed  Google Scholar 

  3. Al Rwahnih, M., Daubert, S., Golino, D., et al., Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine, Phytopathology, 2015, vol. 105, no. 6, pp. 758–763. https://doi.org/10.1094/PHYTO-06-14-0165-R

    CAS  Article  PubMed  Google Scholar 

  4. Allander, T., Emerson, S.U., Engle, R.E., et al., A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 20, pp. 11609–11614. https://doi.org/10.1073/pnas.211424698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Barba, M., Czosnek, H., and Hadidi, A., Historical perspective, development, and applications of next-generation sequencing in plant virology, Viruses, 2014, vol. 6, no. 1, pp. 106–136. https://doi.org/10.3390/v6010106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bejerman, N., Humberto, D., Nome, C., et al., Redefining the Medicago sativa alphapartitiviruses genome sequences, Virus Res., 2019, vol. 265, pp. 156–161. https://doi.org/10.1016/j.virusres.2019.03.021

    CAS  Article  PubMed  Google Scholar 

  7. Bernardo, P., Ecologie, diversité et découverte de phytovirus à l’échelle de deux agro-écosystèmes dans un cadre spatio-temporel à l’aide de la géométagénomique, Ph.D. Thesis, University of Montellier II, 2014. https://tel.archives-ouvertes.fr/tel-01697877/file/2017_ FRANCOIS_archivage.pdf

  8. Bi, Y.Q., Tugume, A.K., and Valkonen, J.P.T., Small-RNA deep sequencing reveals Arctium tomentosum as a natural host of Alstroemeria virus X and a new putative emaravirus, PLos One, 2012, vol. 7, no. 8. e42758. https://doi.org/10.1371/journal.pone.0042758

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bisnieks, M., Kvarnheden A, Turka I, et al., Occurrence of barley yellow dwarf virus and cereal yellow dwarf virus in pasture grasses and spring cereals in Latvia, Acta Agric. Scand. Sect. B Soil Plant Sci., 2006, vol. 56, no. 3, pp. 171–178. https://doi.org/10.1080/09064710500297658

    Article  Google Scholar 

  10. Bodaghi, S., Mathews, D.M., and Dodds, J.A., Natural incidence of mixed infections and experimental cross protection between two genotypes of Tobacco mild green mosaic virus, Phytopathology, 2004, vol. 94, no. 12, pp. 1337–1341. https://doi.org/10.1094/PHYTO.2004.94.12.1337

    Article  PubMed  Google Scholar 

  11. Breitbart, M. and Rohwer, F., Here a virus, there a virus, everywhere the same virus?, Trends Microbiol., 2005, vol. 13, no. 6, pp. 278–284. https://doi.org/10.1016/j.tim.2005.04.003

    CAS  Article  PubMed  Google Scholar 

  12. Casas, V. and Rohwer, F., Phage metagenomics, Methods Enzymol., 2007, vol. 421, pp. 259–268. doi (06)21020-6https://doi.org/10.1016/S0076-6879

  13. Crabtree, A.M., Kizer, E.A., Hunter, S.S., et al., A rapid method for sequencing double-stranded RNAs purified from yeasts and the identification of a potent K1 killer toxin isolated from Saccharomyces cerevisiae, Viruses, 2019, vol. 11, p. 70. https://doi.org/10.3390/v11010070

    CAS  Article  PubMed Central  Google Scholar 

  14. Currier, S. and Lockhart, B., Characterization of a potexvirus infecting Hosta spp., Plant Dis., 1996 vol. 80, pp. 1040–1043. https://doi.org/10.1094/PD-80-1040

    Article  Google Scholar 

  15. Dashchenko, A.V., Monitoring of viruses of medicinal plants of the family Asteraceae, Quarantine Plant Protect., 2014, vol. 1, pp. 10–14.

    Google Scholar 

  16. Delwart, E.L., Viral metagenomics, Rev. Med. Virol., 2007, vol. 17, no. 2, pp. 115–131. https://doi.org/10.1002/rmv.532

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Diaz-Ruiz, J.R. and Kaper, J.M., Isolation of viral double-stranded RNAs using a LiCl fractionation procedure, Prep. Biochem., 1978, vol. 8, no. 1, pp. 1–17. https://doi.org/10.1080/00327487808068215

    CAS  Article  PubMed  Google Scholar 

  18. Dodds, J.A., Morris, T.J., and Jordan, R.L., Plant viral double-stranded RNA, Annu. Rev. Phytopathol., 1984, vol. 22, pp. 151–168. https://doi.org/10.1146/annurev.py.22.090184.001055

    CAS  Article  Google Scholar 

  19. Donaire, L., Wang, Y., Gonzalez-Ibeas, D., et al., Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes, Virology, 2009, vol. 392, no. 2, pp. 203–214.https://doi.org/10.1016/j.virol.2009.07.005

  20. Edwards, R.A. and Rohwer, F., Viral metagenomics, Nat. Rev. Microbiol., 2005, vol. 3, no. 6, pp. 504–510. https://doi.org/10.1038/nrmi-cro1163

    CAS  Article  PubMed  Google Scholar 

  21. Fagnan, M.W. and Rowley, P.A., A rapid method for sequencing double-stranded RNAs purified from yeasts and the identification of a potent K1 killer toxin isolated from Saccharomyces cerevisiae, Viruses, 2019, vol. 11, p. 70. https://doi.org/10.3390/v11010070

    CAS  Article  PubMed Central  Google Scholar 

  22. Fargette, D., Konate, G., Fauquet, C., et al., Molecular ecology and emergence of tropical plant viruses, Annu. Rev. Phytopathol., 2006, vol. 44, pp. 235–260. https://doi.org/10.1146/annurev.phyto.44.120705.104644

    CAS  Article  PubMed  Google Scholar 

  23. Flegr, J., A rapid method for isolation of double stranded RNA, Prep. Biochem., 1987, vol. 17, no. 4, pp. 423–433. https://doi.org/10.1080/00327488708062505

    CAS  Article  PubMed  Google Scholar 

  24. Fraile, A., Escriu, F., Aranda, M.A., Malpica, J.M., et al., A century of tobamovirus evolution in an Australian population of Nicotiana glauca, J. Virol., 1997, vol. 71, no. 11, pp. 8316– 8320. https://doi.org/10.1128/JVI.71.11.8316-8320.1997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Franklin, R.M., Purification and properties of the replicative intermediate of the RNA bacteriophage R17, Proc. Natl. Acad. Sci. U. S. A., 1966, vol. 55, pp. 1504–1511. https://doi.org/10.1073/pnas.55.6.1504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Harrison, B.D., Plant virus ecology: ingredients, interactions, and environmental influences, Ann. Appl. Biol., 1981, vol. 99, no. 3, pp. 195–209. https://doi.org/10.1111/j.1744-7348.1981.tb04787.x

    Article  Google Scholar 

  27. Ho, T., Al Rwahnih, M., Martin, R.R., et al., High throughput sequencing in plant virus detection and discovery, Phytopathology, 2019, vol. 109, no. 5, pp. 716–725. https://doi.org/10.1094/PHYTO-07-18-0257-RVW

    Article  PubMed  Google Scholar 

  28. Hsu, C.L., Hoepting, C.A., Fuchs, M., et al., Sources of Iris yellow spot virus in New York, Plant Dis., 2011, vol. 95, no. 6, pp. 735–743. https://doi.org/10.1094/PDIS-05-10-0353

    Article  PubMed  Google Scholar 

  29. Ibaba, J.D. and Gubba, A., High-throughput sequencing application in the diagnosis and discovery of plant-infecting viruses in Africa, a decade later, Plants (Basel), 2020, vol. 9, no. 10, pp. 1376. https://doi.org/10.3390/plants9101376

    CAS  Article  PubMed Central  Google Scholar 

  30. Inouye, T. and Mitsuhata, K., Viruses in burdock Arctium lappa L. (Studies on the viruses of plants in Compositae in Japan), Nogaku Kenkyu, 1971, vol. 54, no. 1, pp. 1–14.

    Google Scholar 

  31. Jones, M.S., Kapoor, A., Lukashov, V.V., et al., New DNA viruses identified in patients with acute viral infection syndrome, J. Virol., 2005, vol. 79, no. 13, pp. 8230–9236. https://doi.org/10.1128/JVI.79.13.8230-8236.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kendall, D.A., George, S., and Smith, B.D., Occurrence of barley yellow dwarf viruses in some common grasses (Gramineae) in south west England, Plant Pathol., 1996, vol. 45, no. 1, pp. 29–37. https://doi.org/10.1046/j.1365-3059.1996.d01-98.x

    Article  Google Scholar 

  33. Kim, H., Park, D., and Hahn, Y., Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus, a Deltapartitivirus, and a Marafivirus, Gene, 2018, vol. 638, pp. 7–12. https://doi.org/10.1016/j.gene.2017.09.069

    CAS  Article  PubMed  Google Scholar 

  34. King, A.M.Q., Adams, M.J., Carstens, E.B., and Lefkowitz, E.J., Virus taxonomy: classification and nomenclature of viruses, in Ninth report of the International Committee on Taxonomy of Viruses, Amsterdam: Elsevier, 2012. https://doi.org/10.1016/B978-0-12-384684-6.00136-1

    Book  Google Scholar 

  35. Kobayashi, K., Tomita, R., and Sakamoto, M., Recombinant plant dsRNA-binding protein as an effective tool for the isolation of viral replicative form dsRNA and universal detection of RNA viruses, J. Gen. Plant Pathol., 2009, vol. 75, no. 87. https://doi.org/10.1007/s10327-009-0155-3

  36. Kondo, H., Hirano, S., Chiba, S., et al., Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes, Virus Res., 2013, vol. 177, no. 1, pp. 75–86. https://doi.org/10.1016/j.virusres.2013.07.015

    CAS  Article  PubMed  Google Scholar 

  37. Kreuze, J.F., Perez, A., Untiveros, et al., Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery, and sequencing of viruses, Virology, 2009, vol. 388, no. 1, pp. 1–7. https://doi.org/10.1016/j.virol.2009.03.024

    CAS  Article  PubMed  Google Scholar 

  38. Kyrychenko, A.N. and Kovalenko, A.G., Detection and identification of viruses Hosta plants in Ukraine, Agroecol. J., 2014, no. 1, pp. 92–97

  39. Luo, H., Wylie, S.J., Coutts, B., et al., A virus of an isolated indigenous flora spreads naturally to an introduced crop species, Ann. Appl. Biol., 2011, vol. 159, no. 3, pp. 339–347. https://doi.org/10.1111/j.1744-7348.2011.00496.x

    Article  Google Scholar 

  40. MacDiarmid, R., Rodoni, B., Melcher, U., et al., Biosecurity implications of new technology and discovery in plant virus research, PLoS Pathog., 2013, vol. 9, no. 8. e1003337. https://doi.org/10.1371/journal.ppat.1003337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Maclot, F. Candresse, T., Filloux, D., et al., Illuminating an ecological blackbox: using high throughput sequencing to characterize the plant virome across scales, Front. Microbiol., 2020, vol 11, art. 578064. https://doi.org/10.3389/fmicb.2020.578064

    Article  PubMed  PubMed Central  Google Scholar 

  42. Massart, S., Chiumenti, M., De Jonghe, K., et al., Virus detection by high-throughput sequencing of small RNAs: large scale performance testing of sequence analysis strategies, Phytopathology, 2019, vol. 109, no. 3, pp. 488–497.

    CAS  Article  Google Scholar 

  43. Melcher U, Muthukumar V, Wiley GB, et al., Evidence for novel viruses by analysis of nucleic acids in virus-like particle fractions from Ambrosia psilostachya, J. Virol. Methods, 2008, vol. 152, nos. 1–2, pp. 49–55. https://doi.org/10.1016/j.jviromet.2008.05.030

    CAS  Article  PubMed  Google Scholar 

  44. Min, B.E., Feldman, T.S., Ali, A., et al., Molecular characterization, ecology, and epidemiology of a novel tymovirus in Asclepias viridis from Oklahoma, Phytopathology, 2012, vol. 102, no. 2, pp. 166–176. https://doi.org/10.1094/PHYTO-05-11-0154

    CAS  Article  PubMed  Google Scholar 

  45. Morris, T.J. and Dodds, J.A., Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue, Phytopathology, 1979, vol. 69, pp. 854–858. https://doi.org/10.1094/Phyto-69-854

    CAS  Article  Google Scholar 

  46. Muthukumar, V., Melcher, U., Pierce, M., et al., Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions, Virus Res., 2009, vol. 141, no. 2, pp. 169–173. https://doi.org/10.1016/j.virusres.2008.06.016

    CAS  Article  PubMed  Google Scholar 

  47. Mutuku, J.M., Wamonje, F.O., Mukeshimana, G., et al., Metagenomic analysis of plant virus occurrence in common bean (Phaseolus vulgaris) in Central Kenya, Front. Microbiol., 2018, vol. 9, p. 2939. doi . 2018.02939https://doi.org/10.3389/fmicb

  48. Nemchinov, L.G., Lee, M.N., and Shao, J., First report of alphapartitiviruses infecting alfalfa (Medicago sativa L.) in the United States, Microbiol. Resour. Announc., 2018, vol. 7, no. 21. e01266-18. https://doi.org/10.1128/MRA.01266-18

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ooi, K. and Yahara, T., Genetic variation of gemini-viruses: comparison between sexual and asexual host plant populations, Mol. Ecol., 1999, vol. 8, no. 1, pp. 89–97. https://doi.org/10.1046/j.1365-294X.1999.00537.x

    Article  Google Scholar 

  50. Pallett, D.W., Ho, T., Cooper, I., et al., Detection of Cereal yellow dwarf virus using small interfering RNAs and enhanced infection rate with Cocksfoot streak virus in wild cocksfoot grass (Dactylis glomerata), J. Virol. Methods, 2010, vol. 168, nos. 1–2, pp. 223–227.https://doi.org/10.1016/j.jviromet.2010.06.003

  51. Panyna, E.H., Petruk, Y.V., and Zvomikkmy, V.P., On the problem of studying the nature of lucerne dwarfism, in Aktualnye problemy agroekologii i zemledeliya Nizhnei Volgi (Actual Problems of Agroecology and Agriculture in the Lower Volga Region), Moscow: RUDN, 1992, pp. 174–185.

  52. Pedron, R., Esposito, A., Bianconi, I., et al., Genomic and metagenomic insights into the microbial community of a thermal spring, Microbiome, 2019, vol. 7, no. 8. https://doi.org/10.1186/s40168-019-0625-6

  53. Pozhylov, I., Stakhurska, O, and Shybanov, S., Monitoring of mountain ash plants for the emaravirus infection in the biocoenoses of Ukraine, in Youth and Progress of Biology: XII International Scientific Conference for Students and PhD Students, Ivan Franko National University of Lviv, Lviv, April 25–27, 2017, 2019. http:// www.terreco.univ.kiev.ua/_media/library/antarctic/ pimb-tezi-2017.pdf

  54. Raybould, A., Maskell, L., Edwards, M., et al., The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea, New Phytol., 1999, vol. 141, no. 2, pp. 265–275. https://doi.org/10.1046/j.1469-8137.1999.00339.x

  55. Roossinck, M.J., Lifestyles of plant viruses, Philos. Trans. R. Soc., B, 2010, vol. 365, no. 1548, pp. 1899–1905. https://doi.org/10.1098/rstb.2010.0057

  56. Roossinck, M.J., Plant virus metagenomics: biodiversity and ecology, Annu. Rev. Genet., 2012b, vol. 46, pp. 357–367. https://doi.org/10.1146/annurev-genet-110711-155600

    CAS  Article  Google Scholar 

  57. Roossinck, M.J., Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles, Front. Microbiol., 2015, vol. 5, p. 767. https://doi.org/10.3389/fmicb.2014.00767

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roossinck, M.J., Martin, D.P., and Roumagnac, P., Plant virus metagenomics: advances in virus discovery, Phytopathology, 2015, vol. 105, no. 6, pp. 716–727. https://doi.org/10.1094/PHYTO-12-14-0356-RVW

    CAS  Article  PubMed  Google Scholar 

  59. Roossinck, M.J., Saha, P., Wiley, G.B., et al., Eco-genomics: using massively parallel pyrosequencing to understand virus ecology, Mol. Ecol., 2010, vol. 19, no. 1, pp. 81–88. https://doi.org/10.1111/j.1365-294X.2009.04470.x

    Article  PubMed  Google Scholar 

  60. Samarfard, S., McTaggart, A.R., Sharman, M., et al., Viromes of ten alfalfa plants in Australia reveal diverse known viruses and a novel RNA virus, Pathogens, 2020, vol. 9, no. 3, p. 214. https://doi.org/10.3390/pathogens9030214

    CAS  Article  PubMed Central  Google Scholar 

  61. Scheets, K., Infectious transcripts of an asymptomatic panicovirus identified from a metagenomic survey, Virus Res., 2013, vol. 176, nos. 1–2, pp. 161–168. https://doi.org/10.1016/j.virusres.2013.06.001

    CAS  Article  PubMed  Google Scholar 

  62. Shchetynina, G., Budzanivska, I., Kharina, A., et al., First detection of Hosta virus X in Ukraine, Bull. Taras Shevchenko Natl. Univ. Kyiv, 2012, vol. 62, pp. 8–50.

    Google Scholar 

  63. Snihur, H., Pozhylov, I., Budzanivska, I., et al., First report of High Plains wheat mosaic virus on different hosts in Ukraine, J. Plant Pathol., 2020, vol. 102, pp. 545–546. https://doi.org/10.1007/s42161-019-00435-y

    Article  Google Scholar 

  64. Stobbe, A. and Roossinck, M.J., Plant virus diversity and evolution, in Current Research Topics in Plant Virology, Wang, A. and Zhou, X., Eds., Cham: Springer, 2016, pp. 241–250. https://doi.org/10.1007/978-3-319-32919-2_8

    Book  Google Scholar 

  65. Stobbe, A.H. and Roossinck, M.J., Plant virus meta-genomics: what we know and why we need to know more, Front. Plant Sci., 2014, vol. 5, art. 150. https://doi.org/10.3389/fpls.2014.00150

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stukenbrock, E.H. and McDonald, B.A., The origins of plant pathogens in agro-ecosystems, Annu. Rev. Phytopathol., 2008, vol. 46, no. 1, pp. 75–100. https://doi.org/10.1146/annurev.phyto.010708.154114

    CAS  Article  PubMed  Google Scholar 

  67. Thapa, V., Melcher, U., Wiley, G.B., et al., Detection of members of the Secoviridae in the Tallgrass Prairie Preserve, Osage County, Oklahoma, USA, Virus Res., 2012, vol. 167, no. 1, pp. 34–42. https://doi.org/10.1016/j.virusres.2012.03.016

    CAS  Article  PubMed  Google Scholar 

  68. Thomson, S.V., Davis, M.J., Kloepper, J.W., et al., Alfalfa dwarf: relationship of the bacterium causing Pierce’s disease of grapevines and almond leaf scorch disease, in Third Int. Cong. Plant Pathol., Munich, 1978, p. 64.

  69. Weimer, J.L., Alfalfa mosaic virus, Phytopathology, 1931, vol. 21, p. 122. https://doi.org/10.1016/S0065-3527(08)60880-5

    Article  Google Scholar 

  70. Wren, J.D., Roossinck, M.J., Nelson, R.S., et al., Plant virus biodiversity and ecology, PLoS Biol., 2006, vol. 4, no. 3. e80. https://doi.org/10.1371/journal.pbio.0040080

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Zablocki, O., Adriaenssens, E.M., and Cowan, D., Diversity and ecology of viruses in hyperarid desert soils, Appl. Environ. Microbiol., 2016, vol. 82, pp. 770–777. https://doi.org/10.1128/AEM.02651-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out in accordance with the plans of departmental fundamental topics of the laboratory of plant viruses of the Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine in the direction “Viral Infections of Wild Flora as Factors of Plant Productivity in Agrobiocenoses” (DR no. 0120U000221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kyrychenko.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kyrychenko, A.N., Shcherbatenko, I.S. & Kovalenko, A.G. Viruses of Wild Plants and Current Metagenomic Methods for Their Investigation. Cytol. Genet. 55, 248–255 (2021). https://doi.org/10.3103/S0095452721030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721030038

Keywords:

  • plant viruses
  • weeds
  • metagenomic analysis
  • diagnostics of plant viral infections