Skip to main content

The Role of Oxidative Stress in Apoptosis and Cell Proliferation of Human Bronchial Epithelial Cells

Abstract

Oxidative stress is an important pathophysiological factor in chronic respiratory diseases. Our study aimed at elucidating through which pathway oxidative stress–mediated apoptosis occurs at the gene expression level under oxidative stress in the human bronchial epithelial cell line BEAS-2B. Suitable doses and time period were detected by exposing BEAS-2B cells to hydrogen peroxide (H2O2) at different doses and time periods, and the oxidative-damaged cell culture model was designed. The treatment and control groups were compared in terms of gene expression levels determined by Quantitative Real Time Polymerase Chain Reaction. The oxidative-damaged cell model was confirmed by the spectrophotometric measurement of malondialdehyde and catalase activity (p < 0.05). Caspase-3, caspase-9, bax, and bak gene expression levels increased significantly in the treatment groups compared to the control group (p < 0.05). There were not any significant differences between the groups in terms of caspase-8, Bcl-2, and bik (p > 0.05). p53 and p21 gene expression levels were found to be significantly higher in the treatment groups (p < 0.05). H2O2-induced oxidative stress, induced apoptosis through the intrinsic pathway at gene expression level in the bronchial epithelial BEAS-2B cells was observed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol 105, pp. 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    CAS  Article  PubMed  Google Scholar 

  2. Aebi, H., Wyss, S.R., Scherz, B., et al., Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits, Eur. J. Biochem., 1974, vol. 48, no. 1, pp. 137–145. https://doi.org/10.1111/j.1432-1033.1974.tb03751.x

    CAS  Article  PubMed  Google Scholar 

  3. Antognelli, C., Gambelunghe, A., Talesa, V.N., et al., Reactive oxygen species induce apoptosis in bronchial epithelial BEAS-2B cells by inhibiting the antiglycation glyoxalase I defence: involvement of superoxide anion, hydrogen peroxide and NF-kappaB, Apoptosis, 2014, vol. 19, no. 1, pp. 102–116. https://doi.org/10.1007/s10495-013-0902-y

    CAS  Article  PubMed  Google Scholar 

  4. Begnini, K.R., Moura de Leon, P.M., Thurow, H., et al., Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells, Evid. Based Complement Alternat. Med., 2014, vol. 2014, article 639856. https://doi.org/10.1155/2014/639856

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen, J.J., Bertrand, H., and Yu, B.P., Inhibition of adenine nucleotide translocator by lipid peroxidation products, Free Radic. Biol. Med., 1995, vol. 19, no. 5, pp. 583–590. https://doi.org/10.1016/0891-5849(95)00066-7

    CAS  Article  PubMed  Google Scholar 

  6. Cho, I.H., Gong, J.H., Kang, M.K., et al., Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling, BMC Pulm. Med., 2014, vol. 14, p. 122. https://doi.org/10.1186/1471-2466-14-122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Downs, C.A., Montgomery, D.W., and Merkle, C.J., Age-related differences in cigarette smoke extract-induced H2O2 production by lung endothelial cells, Microvasc. Res., 2011, vol. 82, no. 3, pp. 311–317. https://doi.org/10.1016/j.mvr.2011.09.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Gallet, P.F., Petit, J.M., Maftah, A., et al., Asymmetrical distribution of cardiolipin in yeast inner mitochondrial membrane triggered by carbon catabolite repression, Biochem. J., 1997, vol. 324 (Pt. 2), pp. 627–634. https://doi.org/10.1042/bj3240627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Gurr, J.R., Wang, A.S., Chen, C.H., et al., Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells, Toxicology, 2005, vol. 213, nos. 1–2, pp. 66–73. https://doi.org/10.1016/j.tox.2005.05.007

    CAS  Article  PubMed  Google Scholar 

  10. Hsia, T.C. and Yin, M.C., S-Ethyl cysteine and S-methyl cysteine protect human bronchial epithelial cells against hydrogen peroxide induced injury, J. Food Sci., 2015, vol. 80, no. 9, pp. H2094–H2101. https://doi.org/10.1111/1750-3841.12973

    CAS  Article  PubMed  Google Scholar 

  11. Huang, Y.D., Li, P., Tong, X., et al., Effects of bleomycin A5 on caspase-3, P53, bcl-2 expression and telomerase activity in vascular endothelial cells, Indian J. Pharmacol., 2015, vol. 47, no. 1, pp. 55–58. https://doi.org/10.4103/0253-7613.150337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Jain, S.K., Membrane lipid peroxidation in erythrocytes of the newborn, Clin. Chim. Acta, 1986, vol. 161, no. 3, pp. 301–306. https://doi.org/10.1016/0009-8981(86)90014-8

    CAS  Article  PubMed  Google Scholar 

  13. Kocabaş, A., Kronik obstrüktif akciğer hastaliği epidemiyolojisi ve risk faktörleri, TTD Toraks Cerrahisi Bülteni, 2010, vol. 1, no. 2, pp. 105–113.

    Google Scholar 

  14. Lartillot, S., Kedziora, P., and Athias, A., Purification and characterization of a new fungal catalase, Prep. Biochem., 1988, vol. 18, no. 3, pp. 241–246. https://doi.org/10.1080/00327488808062526

    CAS  Article  PubMed  Google Scholar 

  15. Lu, Y., Xu, D., Zhou, J., et al., Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines, J. Hematol. Oncol., 2013, vol. 6, no. 1, p. 71. https://doi.org/10.1186/1756-8722-6-71

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Martins, D. and English, A.M., Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast, Redox Biol., 2014, vol. 2, pp. 308–313. https://doi.org/10.1016/j.redox.2013.12.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, vol. 65, nos. 1–2, pp. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    CAS  Article  PubMed  Google Scholar 

  18. Nomura, K., Imai, H., Koumura, T., et al., Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis, Biochem. J., 2000, vol. 351 (Pt. 1), pp. 183–193. https://doi.org/10.1042/0264-6021:3510183

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Öner Erkekol, F, Köktürk, N., Mungan, D., et al., Türkiye kronik hava yolu hastalıkları önleme ve kontrol programı (GARD Türkiye) birinci basamakta çalışan hekim eğitimi bilgi değerlendirme sonuçları, Tuberk. Toraks, 2017, vol. 65, no. 2, pp. 80–89. https://doi.org/10.5578/tt.53804

    Article  PubMed  Google Scholar 

  20. Orrenius, S., Reactive oxygen species in mitochondria-mediated cell death, Drug Metab. Rev., 2007, vol. 39, nos. 2–3, pp. 443–455. https://doi.org/10.1080/03602530701468516

    CAS  Article  PubMed  Google Scholar 

  21. Pisoschi, A.M. and Pop, A., The role of antioxidants in the chemistry of oxidative stress: a review, Eur. J. Med. Chem., 2015, vol. 97, pp. 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

    CAS  Article  PubMed  Google Scholar 

  22. Poljsak, B., Suput, D., and Milisav, I., Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants, Oxid. Med. Cell Longev., 2013, vol. 2013, article 956792. https://doi.org/10.1155/2013/956792

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Shidoji, Y., Hayashi, K., Komura, S., et al., Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation, Biochem. Biophys. Res. Commun., 1999, vol. 264, no. 2, pp. 343–347. https://doi.org/10.1006/bbrc.1999.1410

    CAS  Article  PubMed  Google Scholar 

  24. Tsao, S.M. and Yin, M.C., Antioxidative and antiinflammatory activities of asiatic acid, glycyrrhizic acid, and oleanolic acid in human bronchial epithelial cells, J. Agric. Food Chem., 2015, vol. 63, no. 12, pp. 3196–3204. https://doi.org/10.1021/acs.jafc.5b00102

    CAS  Article  PubMed  Google Scholar 

  25. Tseng, C.Y., Wang, J.S., Chang, Y.J., et al., Exposure to high-dose diesel exhaust particles induces intracellular oxidative stress and causes endothelial apoptosis in cultured in vitro capillary tube cells, Cardiovasc. Toxicol., 2015, vol. 15, no. 4, pp. 345–354. https://doi.org/10.1007/s12012-014-9302-y

    CAS  Article  PubMed  Google Scholar 

  26. Ushmorov, A., Ratter, F., Lehmann, V., et al., Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release, Blood, 1999, vol. 93, no. 7, pp. 2342–2352

    CAS  Article  Google Scholar 

  27. Wu, J., Shi, Y., Asweto, C.O., et al., Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells, Environ. Sci. Pollut. Res. Int., 2017, vol. 24, no. 32, pp. 25071–25081. https://doi.org/10.1007/s11356-0170090-3

    CAS  Article  PubMed  Google Scholar 

  28. Wu, X.F., Wang, L.Y., Yi, J.H., et al., Protective effect of paeoniflorin against PM2.5-induced damage in BEAS-2B cells, Nan Fang Yi Ke Da Xue Xue Bao, 2018, vol. 38, no. 2, pp. 168–173. https://doi.org/10.3969/j.issn.1673-4254.2018.02.08

    CAS  Article  PubMed  Google Scholar 

  29. Yarosz, E.L. and Chang, C.H., The role of reactive oxygen species in regulating T cell- mediated immunity and disease, Immune Network, 2018, vol. 18, no. 1, e14. https://doi.org/10.4110/in.2018.18.e14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yi, S., Zhang, F., Qu, F., et al., Water-insoluble fraction of airborne particulate matter (PM10) induces oxidative stress in human lung epithelial A549 cells, Environ. Toxicol., 2014, vol. 29, no. 2, pp. 226–233. https://doi.org/10.1002/tox.21750

    CAS  Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Meral Urhan-Kucuk and Hasret Ecevit have carried out the design and coordinated the study as well as they have checked the last revisions and send the manuscript. The author of the PhD thesis Hasret Ecevit has carried out the experimental analysis and prepared the manuscript. Abdullah Arpacı has evaluated the experimental analysis. Haluk Uluca and Duygu Tap have assisted in experimental analysis.

Funding

This study is supported by Hatay Mustafa Kemal University Scientific Research Projects Unit (Project no. 16745) Hatay, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meral Urhan-Kucuk.

Ethics declarations

The authors declare that there is no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ecevit, H., Urhan-Kucuk, M., Uluca, H. et al. The Role of Oxidative Stress in Apoptosis and Cell Proliferation of Human Bronchial Epithelial Cells. Cytol. Genet. 55, 283–289 (2021). https://doi.org/10.3103/S0095452721030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721030026

Keywords:

  • apoptosis
  • BEAS-2B
  • cell proliferation
  • oxidative stress
  • reactive oxygen species