Skip to main content
Log in

Genetic Variability in Winter Rye (Secale cereale L.) Accessions at Early Stage of Self-Pollination Manifested through Fertility, Plant Height and Secalins

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Selection of winter self-pollinated plants with short to medium stem height was initiated in 15 cultivated rye populations. About 8.8% seed set per selfed spike was registered in the first two years. In inbred S2 families, self-fertility varied between 0–73 seeds per isolated ear and plant height ranged from 76 to 115 cm. Response to selection and genetic advance in percent of the mean characterized the S3 families for one cycle of selection. SDS-PAGE gel patterns showed two major protein bands for the rye HMW secalins—one slowly moving x-subunit expressed as 2r, 5.2*r and 5.3r, and the second quickly moving y-subunit, expressed as 6r, 6.5r, 7r and 9r. Regarding alleles in Glu-R1 and Gli-R2 loci, nine progenies appeared to show genetic homogeneity in proteins, supporting by low coefficients of variation for plant height. The HMW compositions 2r (alone band) and 5.3r + 7r, were defined as new secalin subunits. 75 K γ-secalins, encoded at Gli-R2, were composed by alleles a, b, c, for subunits d1, d2 and t1, respectively. The results showed that among all, four selfed rye progenies were considered as homogeneous genotypes and could be used as inbred lines in further genetic and breeding experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Amiour, N., Dardevet, M., Khelifi, D., Bouguennec, A., and Branlard, G., Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale, Euphytica, 2002a, vol. 123, pp. 179–186.

    Article  CAS  Google Scholar 

  2. Amiour, N., Bouguennec, A., Marcoz, C., Sourdille, P., Bourgoin, M., Khelifi, D., and Branlard, G., Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe, Euphytica, 2002b, vol. 123, pp. 295–305.

    Article  CAS  Google Scholar 

  3. APHA, 2019. United Kingdom National List Trials: Trial Procedures for Official Examination of Value for Cultivation and Use (VCU) Harvest 2019, March 2019. https://assets.publishing.service.gov.uk/vcu-procedure-winter-oilseed19.pdf.

  4. Arias Aquirre, A., Studer, B., Do Santo, J., Frei, U., and Lübberstedt, T., Mapping a new source of self-fertility in perennial ryegrass (Lolium perenne L.), Plant Breed. Biotech., 2013, vol. 1, pp. 385–395. https://doi.org/10.9787/PBB.2013.1.4.385

    Article  Google Scholar 

  5. Bellil, I., Bouguennec, A., and Khelifi, D., Diversity of seven glutenin and secalin loci within triticale cultivars grown in France, Not. Bot. Hort. Agrobot. Cluj., 2010, vol. 38, pp. 48–55.

    Google Scholar 

  6. Crespo-Herrera, L.A., Garkava-Gustavsson, L., and Ahman, I., A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.), Hereditas, 2017, vol. 154, pp. 1–9. https://doi.org/10.1186/s41065-017-0033-5

    Article  Google Scholar 

  7. Czyczylo-Mysza, I. and Myskow, B., Analysis of the impact of drought on selected morphological, biochemical and physiological traits of rye inbred lines, Acta Physiol. Plant., 2017, vol. 39, p. 87. https://doi.org/10.1007/s11738-017-2385-x

    Article  CAS  Google Scholar 

  8. Daskalova, N. and Spetsov, P., Taxonomic relationships and genetic variability of wild Secale L. species as a source for valued traits in rye, wheat and triticale breeding, Cytol. Genet., 2020, vol. 54, pp. 71–81. https://doi.org/10.3103/S0095452720010041

    Article  Google Scholar 

  9. Dennett, A.L., Cooper, K.V., and Trethowan, R.M., The genotypic and phenotypic interaction of wheat and rye storage proteins in primary triticale, Euphytica, 2013, vol. 194, pp. 235–242. https://doi.org/10.1007/s10681-013-0950-y

    Article  CAS  Google Scholar 

  10. Doneva, S., Daskalova, N., and Spetsov, P., Transfer of novel storage proteins from a synthetic hexaploid line into bread wheat, Zemdirbyste-Agriculture, 2018, vol. 105, pp. 113–122. https://doi.org/10.13080/z-a.2018.105.015

    Article  Google Scholar 

  11. Egorova, I.A., Peneva, T.I., Baranova, O.A., and Voylokov, A.V., Analysis of linkage between biochemical and morphological markers of rye chromosomes 1R, 2R, and 5R and mutations of self-fertility at the main incompatibility loci, Russ. J. Genet., 2000, vol. 36, pp. 1423–1430.

    Article  CAS  Google Scholar 

  12. Goncharenko, A.A., Makarov, A.V., Ermakov, S.A., Semenova, T.V., and Tochilin, V.N., Evaluation of ecological stability and plasticity of inbred lines of winter rye, Russ. Agric. Sci., 2015, vol. 41, pp. 87–94. https://doi.org/10.3103/S106836741502010X

    Article  Google Scholar 

  13. Goncharenko, A.A., Makarov, A.V., Ermakov, S.A., Semenova, T.V., Tochilin, V.N., Tsygankova, N.V., and Krahmaleva, O.A., Selection of winter rye (Secale cereale L.) inbred lines for general and specific combining ability and its relationship with valuable traits, Agric. Biol., 2019, vol. 54, pp. 38–46. https://doi.org/10.15389/agrobiology.2019.1.38eng

    Article  Google Scholar 

  14. Hansen, H.B., Møller, B., Andersen, S.B., Jørgensen, J.R., and Hansen, A., Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year, J. Agric. Food Chem., 2004, vol. 52, pp. 2282–2291. https://doi.org/10.1021/jf0307191

    Article  CAS  PubMed  Google Scholar 

  15. Igrejas, G., Guedes-Pinto, H., Carnide, V., and Branlard, G., Seed storage protein diversity in triticale varieties commonly grown in Portugal, Plant Breed., 1999, vol. 118, pp. 303–306. https://doi.org/10.1046/j.1439-0523.1999.00379.x

    Article  CAS  Google Scholar 

  16. Johnson, H.W., Robinson, H.F., and Comstock, R.E., Estimation of genetic and environmental variability in soybeans, Agron. J., 1955, vol. 47, pp. 314–318.

    Article  Google Scholar 

  17. Jurkowski, A., Bujak, H., and Nowosad, K., Estimation of the level of infection by the powdery mildew Blumeria graminis f. sp. secalis of winter rye Secale cereale L. breeding material, JøKULL J., 2014, vol. 64, p. 332.

    Google Scholar 

  18. Kozub, N.A., Motsnyi, I.I., Sozinov, I.A., Blume, Ya.B., and Sozinov, A.A., Mapping a new secalin locus on the rye 1RS arm, Cytol. Genet., 2014, vol. 48, pp. 203–207. https://doi.org/10.3103/S0095452714040021

    Article  Google Scholar 

  19. Kubicka, H., Carrillo, J.M., and Benito, C., Morphological variability and storage proteins polymorphism in inbred lines of winter rye Secale cereale L., Zeszyty Naukowe Politechniki Bialostockiej, 2005, vol. 10, pp. 257–265.

    Google Scholar 

  20. Kuneva, V., Valchinova, E., and Stoyanova, A., Evaluation of rye specimens in maturity stage on the basis of mathematical-statistical analysis, Agric. Sci. Technol., 2018, vol. 10, pp. 21–24. https://doi.org/10.15547/ast.2018.01.005

    Article  Google Scholar 

  21. Kussovska, V., Agronomic characteristics of the newly synthesized primary alloplasmic octoploid forms of triticale, Bulg. J. Agric. Sci., 2011, vol. 17, pp. 145–149.

    Google Scholar 

  22. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  Google Scholar 

  23. McIntosh, R.A., Hart, G.E., Devos, K.M., Morris, C.F., and Rogers, W.J., V. Catalogue of Gene Symbols for Wheat: 2003 Supplement, Ann. Wheat Newsl., 2003, vol. 49, pp. 246–282.

    Google Scholar 

  24. Miedaner, T., Mtiller, B.U., Piepho, H.-P., and Falke, K.C., Genetic architecture of plant height in winter rye introgression libraries, Plant Breed., 2011, vol. 130, pp. 209–216. https://doi.org/10.1111/j.1439-0523.2010.01823.x

    Article  Google Scholar 

  25. Miedaner, T., Schwegler, D.D., Wilde, P., and Reif, J.C., Association between line per se and testcross performance for eight agronomic and quality traits in winter rye, Theor. Appl. Genet., vol. 127, pp. 33-41. https://doi.org/10.1007/s00122-013-2198-2

  26. Prášilová, P. and Prášil, I., Winter-hardiness scale for wheat cultivars of different geographical origin, Icel. Agr. Sci., 2001, vol. 14, pp. 35–39.

    Google Scholar 

  27. Rakoczy-Trojanowska, M., Orczyk, W., Krajewski, P., Bocianowski, J., Stochmal, A., and Kowalczyk, M., ScBx gene based association analysis of hydroxamate content in rye (Secale cereale L.), J. Appl. Genet., 2017, vol. 58, pp. 1–9. https://doi.org/10.1007/s13353-016-0356-3

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro, M., Seabra, L., Ramos, A., Santos, S., Pinto-Carnide, O., Carvalho, C., and Igrejas, G., Polymorphism of the storage proteins in Portuguese rye (Secale cereale L.) populations, Hereditas, 2012, vol. 149, pp. 72–84. https://doi.org/10.1111/j.1601-5223.2012.02239.x

    Article  PubMed  Google Scholar 

  29. Salmanowicz, B.P., Langner, M., and Kubicka-Matusiewicz, H., Variation of high-molecular-weight secalin subunit composition in rye (Secale cereale L.) inbred lines, J. Agric. Food Chem., 2014, vol. 62, pp. 10535–10541. https://doi.org/10.1021/jf502926q

    Article  CAS  PubMed  Google Scholar 

  30. Schlegel, R., Current List of Wheats with Rye and Alien Introgression, version 02-14, 2014. http://www.rye-gene-map.de/rye-introgression.

  31. Sesay, S., Ojo, D., Ariyo, O.J., and Meseka, S., Genetic variability, heritability and genetic advance studies in top-cross and three-way cross maize (Zea mays L.) hybrids, Maydica, 2016, vol. 61, pp. 1–7.

    Google Scholar 

  32. Shewry, P.R., Parmar, S., and Miflin, B.J., Extraction, separation and polymorphism of the prolamin storage proteins (secalins) of rye, Cereal Chem., 1983, vol. 60, pp. 1–6.

    CAS  Google Scholar 

  33. Simmonds, N.W., Principles of Crop Improvement, USA, New York: Longman, 1979.

    Google Scholar 

  34. Singh, R.K. and Chaudhary, B.D., Biometrical Methods in Quantitative Genetic Analysis, New Delhi, India: Kalyani Publishers, 2004.

    Google Scholar 

  35. Singh, N.K., Shepherd, K.W., and Cornish, G.B., A simplified SDS-PAGE procedure for separating LMW subunits of glutenin, J. Cereal Sci., 1991, vol. 14, pp. 203–208.

    Article  Google Scholar 

  36. Snedecor, G.W. and Cochran, W.G., Statistical Methods, 7th ed., The Iowa State University Press, 1980.

    Google Scholar 

  37. Tikhenko, N., Rutten, T., Voylokov, A., and Houben, A., Analysis of hybrid lethality in F1 wheat-rye hybrid embryos, Euphytica, 2008, vol. 159, pp. 367–375. https://doi.org/10.1007/s10681-007-9528-x

    Article  Google Scholar 

  38. Tikhenko, N.D., Tsvetkova, N.V., Lyholay, A.N., and Voylokov, A.V., Identification of complementary genes of hybrid lethality in crosses of bread wheat and rye. Results and prospects, Russ. J. Genet.: Appl. Res., 2017, vol. 7, pp. 153–158. https://doi.org/10.1134/S2079059717020149

    Article  Google Scholar 

  39. Voylokov, A.V., Prospects of using self-fertility in breeding rye populations varieties, Russ. J. Genet., 2007, vol. 43, pp. 1402–1410.https://doi.org/10.1134/S1022795407100122

Download references

ACKNOWLEDGMENTS

The study was carried out in the Technical University grounds—Varna; Dobrudzha Agricultural Institute—General Toshevo supported the seed storage analysis, while all other activities were managed at ND and PS expense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Spetsov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskalova, N., Doneva, S. & Spetsov, P. Genetic Variability in Winter Rye (Secale cereale L.) Accessions at Early Stage of Self-Pollination Manifested through Fertility, Plant Height and Secalins. Cytol. Genet. 55, 96–104 (2021). https://doi.org/10.3103/S0095452721010059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721010059

Keywords:

Navigation