Skip to main content

Evaluation of Phytotoxicity and Mutagenicity of Novel DMAEMA-Containing Gene Carriers

Abstract—The use of novel carriers for gene delivery has been rapidly growing; thus, investigation of potential phytotoxic and mutagenic action of gene delivery carriers is important for preventing their negative side effects. We found that poly-DMAEMA carriers used in a 0.0025% dose exhibited a weak cytotoxic effect towards Allium cepa plants. In a higher dose (0.025%), they slightly (by 26–55%) increased the level of catalase activity but did not affect the level of superoxide dismutase activity and malondialdehyde content in roots of A. cepa. Results of the ana-telophase test in A. cepa demonstrated no genotoxic activity of the polymeric carriers used in a 0.0025% concentration and the higher dose (0.025%). Slight genotoxic activity was detected only for BGP24 and BGP26, PEG-containing poly-DMAEMA carriers, used in 0.025% concentration. The Ames test (–S9 and +S9) revealed no mutagenic potential of the DMAEMA-based polymers. Thus, low phytotoxicity and no mutagenicity of novel polymeric carriers suggest their potential as promising nanocarriers for gene delivery into plant cells.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Cunningham, F.J., Goh, N.S., Demirer, G.S., Matos, J.L., and Landry, M.P., Nanoparticle-mediated delivery towards advancing plant genetic engineering, Trends Biotechnol., 2018, vol. 36, no. 9, pp. 882–897. https://doi.org/10.1016/j.tibtech.2018.03.009

    CAS  Article  PubMed  Google Scholar 

  2. Demirer, G.S., Zhang, H., Matos, J.L., Goh, N.S., Cunningham, F.J., Sung, Y., Chang, R., Aditham, A.J., Chio, L., Cho, M.J., Staskawicz, B., and Landry, M.P., High-aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants, Nat. Nanotechnol., 2019, vol. 14, no. 5, pp. 456–464. https://doi.org/10.1038/s41565-019-0382-5

    CAS  Article  PubMed  Google Scholar 

  3. Tomlinson and Rolland, A.P., Controllable gene therapy: pharmaceutics of non-viral gene delivery systems, J. Control. Release, 1996, vol. 39, nos. 2–3, pp. 357–372. https://doi.org/10.1016/0168-3659(95)00166-2

    Article  Google Scholar 

  4. Lv, H., Zhang S., Wang B., Cui S., and Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, vol. 114, no. 1, pp. 100–109. https://doi.org/10.1016/j.jconrel.006.04.014

    CAS  Article  PubMed  Google Scholar 

  5. Cerda-Cristerna B.I., Flores H., Pozos-Guillén A., Pérez E., Sevrin C., and Grandfils C. Hemocompatibility assessment of poly(2-dimethylaminoethylmethacrylate) (PDMAEMA)-based polymers, J. Control. Release, 2011, vol. 153, no. 3, pp. 269–277. https://doi.org/10.1016/j.jconrel.2011.04.016

    CAS  Article  PubMed  Google Scholar 

  6. Plamper, F.A., Synatschke, C.V., Majewski, A.P., Schmalz, A., Schmalz, H., and Müller, A.H.E., Star-shaped poly[2-(dimethylamino)ethyl methacrylate] and its derivatives: toward new properties and applications, Polimery, 2014, vol. 59, no. 1, pp. 66–73. https://doi.org/10.14314/polimery.2014.066

    CAS  Article  Google Scholar 

  7. Zhang, S., Xu, Y., Wang, B., Qiao, W., Liu, D., and Li, Z., Cationic compounds used in lipoplexes and polyplexes for gene delivery, J. Control. Release, 2004, vol. 100, no. 2, pp. 165–180. https://doi.org/10.1016/j.jconrel.2004.08.019

    CAS  Article  PubMed  Google Scholar 

  8. Agarwal, S., Zhang, Y., Maji, S., and Greiner, A., PDMAEMA based gene delivery materials, Materials Today, 2012, vol. 15, no. 9, pp. 388–393. https://doi.org/10.1016/S1369-7021(12)70165-7

    CAS  Article  Google Scholar 

  9. Arnold, A.E, Czupiel, P., and Shoichet, M., Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids, J. Control. Release, 2017, vol. 259, pp. 3–15. https://doi.org/10.1016/j.jconrel.2017.02.019

    CAS  Article  PubMed  Google Scholar 

  10. Cheng, Q., Du, L.L., Meng, L.W., Han, S.C., Wei, T., Wang, X.X., Wu, Y.D., Song, X.Y., Zhou, J.H., Zheng, S.Q., Huang, Y.Y., Liang, X.J., Cao, H.Q., Dong, A.J., and Liang, Z.C., The promising nanocarrier for doxorubicin and siRNA co-delivery by PDMAEMA-based amphiphilic nanomicelles, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 7, pp. 4347–4356. https://doi.org/10.1021/acsami.5b11789

    CAS  Article  PubMed  Google Scholar 

  11. Ficen, S.Z., Guler, Z., Mitina, N., Finuk, N., Stoika, R., Zaichenko, A., and Ceylan, S.E., Biophysical study of novel oligoelectrolyte based non-viral gene delivery systems to mammalian cells, J. Gene Med., 2013, vol. 15, no. 5, pp. 193–204. https://doi.org/10.1002/jgm.2710

    CAS  Article  PubMed  Google Scholar 

  12. Filyak, Ye., Finiuk, N., Mitina, N., Bilyk, O., Titorenko, V., Hrydzhuk, O., Zaichenko, A., and Stoika, R., A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers, BioTechniques, 2013, vol. 54, no. 1, pp. 35–43. https://doi.org/10.2144/000113980

    CAS  Article  PubMed  Google Scholar 

  13. Finiuk, N., Chaplya, A., Mitina, N., Boiko, N., Lobachevska, O., Miahkota, O., Yemets, A., Blume, Ya., and Stoika, R., Genetic transformation of moss Ceratodon purpureus by means of polycationic carriers of DNA, Cytol. Genet., 2014, vol. 48, no. 6, pp. 345–351. https://doi.org/10.3103/S0095452714060048

    Article  Google Scholar 

  14. Finiuk, N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., and Yemets, A., Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells, Plant Cell Tiss. Organ Cult., 2017, vol. 131, pp. 27–39. https://doi.org/10.1007/s11240-017-1259-7

    CAS  Article  Google Scholar 

  15. von Gersdorff, K., Sanders, N.N., Vandenbroucke, R., De Smedt, S.C., Wagner, E., and Ogris, M., The internalization route resulting in successful gene expression depends on both cell line and polyethylene-minepolyplex type, Mol. Ther., 2006, vol. 14, no. 5, pp. 745–753. https://doi.org/10.1016/j.ymthe.2006.07.006

    CAS  Article  PubMed  Google Scholar 

  16. You, Y.Z., Manickam, D.S., Zhou, Q.H., and Oupický, D., Reducible poly(2-dimethylaminoethyl methacrylate): synthesis, cytotoxicity, and gene delivery activity, J. Control. Release, 2007, vol. 122, no. 3, pp. 217–225. https://doi.org/10.1016/j.jconrel.2007.04.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Marslin, G., Sheeba, C.J., and Franklin, G., Nanoparticles alter secondary metabolism in plants via ROS burst, Front. Plant Sci., 2017, vol. 8, p. 832. https://doi.org/10.3389/fpls.2017.00832

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rao, S. and Shekhawat, G.S., Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea, 3 Biotech, 2016, vol. 6, no. 2, p. 244. https://doi.org/10.1007/s13205-016-0550-3

  19. Schallon, A., Jerome, V., Walther, A., Synatschke, C.V., Muller, A.H.E., and Freitag, R., Performance of three PDMAEMA-based polycation architectures as gene delivery agents in comparison to linear and branched PEI, React. Funct. Polym., 2010, vol. 70, no. 1, pp. 1–10. https://doi.org/10.1016/j.reactfunctpolym.2009.09.006

    CAS  Article  Google Scholar 

  20. Voronov, S.A., Kiselyov, E.M., Minko, S.S., Budishevska, O.G., and Roiter, Y.V., Structure and reactivity of peroxide monomers, J. Polym. Sci. Pol. Chem., 1996, vol. 34, no. 12, pp. 2507–2511. https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2507::AID-POLA24>3.0.CO;2-B

    CAS  Article  Google Scholar 

  21. Paiuk, O., Mitina, N., Slouf, M., Pavlova, E., Finiuk, N., Kinash, N., Karkhut, A., Manko, N., Gromovoy, T., Hevus, O., Shermolovich, Y., Stoika, R., and Zaichenko, A., Fluorine-containing block/branched polyamphiphiles forming bioinspired complexes with biopolymers, Colloids Surf. B Biointerfaces, 2019, vol. 174, pp. 393–400. https://doi.org/10.1016/j.colsurfb.2018.11.047

    CAS  Article  PubMed  Google Scholar 

  22. Zaichenko A., Mitina, N., Shevchuk, O., Rayevska, K., Lobaz, V., Skorokhoda, T., and Stoika, R., Development of novel linear, block and branched oligoelectrolytes and functionally targeting nanoparticles, Pure Appl. Chem., 2008, vol. 80, no. 11, pp. 2309–2326. https://doi.org/10.1351/pac200880112309

    CAS  Article  Google Scholar 

  23. Kirmse, W., Organic Elemental Analysis: Ultramicro, Micro, and Trace Methods, New York: Academic, 1983.

    Google Scholar 

  24. Critchfield, F.E., Organic Functional Group Analysis—International Series of Monographs on Analytical Chemistry, Pergamon Press, 1963.

    Google Scholar 

  25. Fiskesjo, G., Allium test, Methods Mol. Biol., 1995, vol. 43, pp. 19–127.

    Google Scholar 

  26. Cove, D., Perroud, P.F., Charron, A., McDaniel, S., Khandelwal, A., and Quatrano, R., The moss Physcomitrella patens. A novel model system for plant development and genomic studies, in Emerging Model Organisms, A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 2009. https://doi.org/10.1101/pdb.emo115

  27. Goth, L., A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim., 1991, vol. 196, nos. 2–3, pp. 143–151. https://doi.org/10.1016/0009-8981(91)90067-M

    CAS  Article  Google Scholar 

  28. Kumar, G. and Knowles, N.R., Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers, Plant Physiol., 1993, vol. 102, no. 1, pp. 115–124. https://doi.org/10.1104/pp.102.1.115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Rank, J. and Nielsen, M.H., A modified Allium test as a tool in the screening of the genotoxicity of complex mixtures, Hereditas, vol. 118, no. 1, pp. 49–53. https://doi.org/10.1111/j.1601-5223.1993.t01-3-00049.x

  30. Kiełkowska, A., Allium cepa root meristem cells under osmotic (sorbitol) and salt (NaCl) stress in vitro,Acta Bot. Croat., 1993, vol. 76, no. 2, pp. 146–153. https://doi.org/10.1515/botcro-2017-0009

    CAS  Article  Google Scholar 

  31. Mortelmans, K. and Zeiger, E., The Ames Salmonella/microsome mutagenicity assay, Mutat. Res., 2000, vol. 455, nos. 1–2, pp. 29–60. https://doi.org/10.1016/s0027-5107(00)00064-6

    CAS  Article  PubMed  Google Scholar 

  32. OECD Guideline for Testing of Chemicals: Bacterial Reverse Mutation Test, TG 471. Adopted July 1997. Available at chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf.

  33. Yang, J., Cao, W., and Rui, Y., Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms, J. Plant Interact., 2017, vol. 12, no. 1, pp. 158–169. https://doi.org/10.1080/17429145.2017.1310944

    CAS  Article  Google Scholar 

  34. Rajeshwari, A., Roy, B., Chandrasekaran, N., and Mukherjee, A., Cytogenetic evaluation of gold nanorods using Allium cepa test, Plant Physiol. Biochem., 2016, vol. 109, pp. 209–219. https://doi.org/10.1016/j.plaphy.2016.10.003

    CAS  Article  PubMed  Google Scholar 

  35. Shetty, A., Venkatesh, T., Suresh, P.S., and Tsutsumi, R., Exploration of acute genotoxic effects and antigenotoxic potential of gambogic acid using Allium cepa assay, Plant Physiol. Biochem., 2017, vol. 118, pp. 643–652. https://doi.org/10.1016/j.plaphy. 2017.08.005

  36. Ahmed, B., Dwivedi, S., Abdin, M.Z., Azam, A., Al-Shaeri, M., Khan, M.S., Saquib, Q., Al-Khedhairy, A.A., and Musarrat, J., Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Alliumcepa roots, Sci. Rep., 2017, vol. 7, p. 40685. https://doi.org/10.1038/srep40685

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Lah, B., Zinko, B., Tisler, T., and Marinsek-Logara, R., Genotoxicity detection in drinking water by Ames test, Zimmermann test and Comet assay, Acta Chim. Slov., 2005, vol. 52, pp. 341–348.

    CAS  Google Scholar 

  38. McCarren, P., Springer, C., and Whitehead, L., An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential, J. Cheminform., 2011, vol. 3, p. 51. https://doi.org/10.1186/1758-2946-3-51

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Lin, S., Du, F., Wang, Y., Li, S., Liang, D., Yu, L., and Li, Z., An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems, Biomacromolecules, 2008, vol. 9, no. 1, pp. 109–115. https://doi.org/10.1021/bm7008747

    CAS  Article  PubMed  Google Scholar 

  40. Sharma, R., Lee, J.-S., Bettencourt, R.C., Xiao, Ch., Konieczny, S.F., and Won, Y.-Y., Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polyer-DNA complexes, Biomacromolecules, 2008, vol. 9, no. 1, pp. 3294–3297. https://doi.org/10.1021/bm800876v

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Pirotton, S., Muller, C., Pantoustier, N., Botteman, F., Collinet, S., Grandfils, C., Dandrifosse, G., Degée, P., Dubois, P., and Raes, M., Enhancement of transfection efficiency through rapid and noncovalent post-PEGylation of poly(dimethylaminehtylmethacrlyate)/DNA complex, Pharm. Res., 2004, vol. 21, no. 8, pp. 1471–1479. https://doi.org/10.1023/b:pham.0000036923.25772.97

    CAS  Article  PubMed  Google Scholar 

  42. Hong, J., Peralta-Videa, J.R., Rico, C., Sahi, S., Viveros, M.N., Bartonjo, J., Zhao, L., and Gardea-Torresdey, J.L., Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants, Environ. Sci. Technol., 2014, vol. 48, no. 8, pp. 4376–4385. https://doi.org/10.1021/es404931g

    CAS  Article  PubMed  Google Scholar 

  43. Song, U. and Lee, E.J., Ecophysiological responses of plants after sewage sludge compost applications, J. Plant Biol., 2010, vol. 53, pp. 259–267. https://doi.org/10.1007/s12374-010-9112

    CAS  Article  Google Scholar 

  44. Garg, N., and Manchanda, G., ROS generation in plants: boon or bane? Plant Biosyst., 2009, vol. 143, pp. 81–96. https://doi.org/10.1080/11263500802633626

    Article  Google Scholar 

  45. Kenneth, W.A., Advanced Techniques in Chromosome Research, CRC Press, 1991.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank L.S. Bodnar, PhD, Associate Professor (Department of Genetics and Biotechnology, Ivan Franko National University of Lviv) for advice and technical support in conducting the Ames test.

Funding

This work was carried out with the financial support of the grant of the target complex interdisciplinary research program of the National Academy of Sciences of Ukraine “Molecular and Cellular Biotechnology for the Needs of Medicine, Industry, and Agriculture” for 2015–2019 (grant no. 0115U004198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stoika.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Bioethical examination of experiments with laboratory animals was carried out at the Faculty of Biology of Ivan Franko National University of Lviv, protocol, no. 11052018 from May 15, 2018.

Additional information

Translated by K. Lazarev

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finiuk, N., Romanyuk, N., Mitina, N. et al. Evaluation of Phytotoxicity and Mutagenicity of Novel DMAEMA-Containing Gene Carriers. Cytol. Genet. 54, 437–448 (2020). https://doi.org/10.3103/S0095452720050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720050096

  • Keywords: poly(2-dimethylamino)ethyl methacrylate
  • polymeric carrier
  • ana-telophase test
  • Ames test
  • catalase
  • superoxide dismutase
  • malondialdehyde