Skip to main content
Log in

Effect of Gene SFU1 on Riboflavin Synthesis in Flavinogenic Yeast Candida famata

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract—Riboflavin or vitamin B2 is a necessary component for all living organisms since it is the precursor of flavin coenzymes FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide), which are involved in numerous enzymatic reactions. Flavinogenic yeast Candida famata overproduces riboflavin under iron starvation; however, regulation of this process is poorly understood. Regulatory gene SEF1 encoding the transcription activator has been identified. Its deletion blocks yeast’s ability to overproduce riboflavin under iron starvation. It is known that, in the pathogenic flavinogenic yeast C. albicans, Sfu1 (GATA-type transcription factor) represses SEF1. It is demonstrated in this study that deletion of the SEF1 gene in wild type C. famata leads to overproduction of riboflavin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011, vol. 75, pp. 321–360. https://doi.org/10.1128/MMBR.00030-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim, S.H., Choi, J.S., and Park, E.Y., Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis and Candida famate: an overview, Biotechnol. Bioproc. Eng., 2001, vol. 6, pp. 75–88. https://doi.org/10.1007/bf02931951

    Article  CAS  Google Scholar 

  3. Dmytruk, K.V., Yatsyshyn, V.Y., Voronovsky, A.Y., Fedorovych, D.V., and Sibirny, A.A., Construction of riboflavin (vitamin B2) overproducers of the yeast Candida famata,Sci. Innovat., 2009, vol. 5, no. 6, pp. 70–74. https://doi.org/10.15407/scin5.06.070

    Article  Google Scholar 

  4. Stahmann, K.-P., Revuelta, J.L., and Seulberger, H., Three biotechnical processes using Ashbya gossypii Candida famata or Bacillus subtilis compete with chemical riboflavin production, Appl. Microbiol. Biotechnol., 2000, vol. 53, pp. 509–516. https://doi.org/10.1007/s002530051649

    Article  CAS  PubMed  Google Scholar 

  5. Vandamme, E.J., Production of vitamins, coenzymes and related biochemicals by biotechnological processes, J. Chem. Technol. Biotechnol., 1992, vol. 53, pp. 313–327. https://doi.org/10.1002/jctb.280530402

    Article  CAS  PubMed  Google Scholar 

  6. Kato, T. and Park, E.Y., Riboflavin production by Ashbya gossypii, Biotechnol. Lett., 2012, vol. 34, pp. 611–618. https://doi.org/10.1007/s10529-011-0833-z

    Article  CAS  PubMed  Google Scholar 

  7. Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J., and Wittmann, C., Biotechnology of riboflavin, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 2107–2119. https://doi.org/10.1007/s00253-015-7256-z

    Article  CAS  PubMed  Google Scholar 

  8. Burgess, C.M., Smid, E.J., and van Sinderen, D., Bacterial vitamin B2, B11 and B12 overproduction: an overview, Int. J. Food Microbiol., 2009, vol. 133, nos. 1–2, pp. 1–7. https://doi.org/10.1016/j.ijfoodmicro.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  9. Dmytruk, K.V., Yatsyshyn, V.Y., Sybirna N.O., Fedorovych D.V., and Sibirny A.A. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production, Metab. Eng., 2011, vol. 13, no. 1, pp. 82–88. https://doi.org/10.1016/j.ymben.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Dmytruk, K.V. and Sibirny, A.A., Candida famata (Candida flareri), Yeast, 2012, vol. 29, no. 11, pp. 453–458. https://doi.org/10.1002/yea.2929

    Article  CAS  PubMed  Google Scholar 

  11. Dmytruk, K., Lyzak, O., Yatsyshyn, V., Kluz, M., Sibirny, V., Puchalski, C., and Sibirny, A., Construction and fed-batch cultivation of Candida famata with enhanced riboflmavin production, J. Biotechnol., 2014, vol. 172, pp. 11–17. https://doi.org/10.1016/j.biotec.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Dmytruk, K.V., Voronovsky, A.Y., and Sibirny, A.A., Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments, Curr. Genet., 2006, vol. 50, pp. 183–191. https://doi.org/10.1007/s00294-006-0083-0

    Article  CAS  PubMed  Google Scholar 

  13. Lan, C.Y., Rodante, G., Murillo, L.A., Jones, T., Davis, R.W., Dungal, J., Newport, G., and Agabian, N., Regulatory networks affected by iron availability in Candida albicans,Mol. Microbiol., 2004, vol. 53, pp. 1451–1469. https://doi.org/10.1111/j.1365-2958.2004.04214.x

    Article  CAS  PubMed  Google Scholar 

  14. Chen, C. and Noble, S.M., Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host, PLoS Pathog., 2012, vol. 8, no. 11. e1002956. https://doi.org/10.1371/journal.ppat.1002956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Voronovsky, A.A., Abbas, C.A., Fayura, L.R., Kshanovska, B.V., Dmytruk, K.V., Sybirna, K.A., and Sibirny, A.A., Development of a transformation system for the flavinogenic yeast Candida famata,FEMS Yeast Res., 2002, vol. 2, pp. 381–388. https://doi.org/10.1016/S1567-1356(02)00112-5

    Article  CAS  PubMed  Google Scholar 

  16. Sambrook, J., Fritsh, E.F., and Maniatis, T., Molecular Cloning: A LaboratoryManual second ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  17. Chen, C. Pande, K., French, S.D., Tuch, B.B, and Noble, S.M., An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis, Cell Host Microbe, 2011, vol. 18, no. 2, pp. 118–135. https://doi.org/10.1016/j.chom.2011.07.005

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially supported by the grant of the Polish National Science Centre (NCN) Opus UMO-2018/29/B/NZ1/01-497 and the National Academy of Sciences of Ukraine (grant 36-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sibirny.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovska, Y., Lyzak, O., Dmytruk, K. et al. Effect of Gene SFU1 on Riboflavin Synthesis in Flavinogenic Yeast Candida famata . Cytol. Genet. 54, 408–412 (2020). https://doi.org/10.3103/S0095452720050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720050060

Navigation