Skip to main content
Log in

Novel Mutation C.7348C>T in NF1 Gene Identified by Whole-Exome Sequencing in Patient with Overlapping Clinical Symptoms of Neurofibromatosis Type 1 and Bannayan–Riley–Ruvalcaba Syndrome

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Neurofibromatosis type 1 (NF-1) is an autosomal dominant disorder provoking benign cutaneous and nerve sheath tumors. The cutaneous tumors termed as plexiform neurofibromas, which some of them are extremely visible, and can influence the quality of life. They can also develop into invasive forms of carcinomas and infiltrate into multiple tissues, thus endangering the patient’s life. The loss-of-function mutations in NF1 gene are responsible for NF-1 type. Due to the large size of NF1 gene (~350 kb and 60 exons), exist some pseudogenes on another locus, and lack mutation hotspot the molecular characterizing of patients is complex. In this study, we reported a patient showed symptoms of both NF-1 and Bannayan–Riley–Ruvalcaba syndrome (BRRS), then performed a whole-exome sequencing (WES) and a data analysis for molecular characterization. These results showed a single heterozygous nucleotide variant (c.7348C>T) in NF1 gene, which results in a premature stop codon (p.Arg2450Ter) and a truncated protein, causing clinical symptoms of the patient. According to the results, WES is a quick and cost-effective approach for molecular diagnosis of the mixed phenotype of NF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Friedman, J., Review article: neurofibromatosis 1: clinical manifestations and diagnostic criteria, J. Child Neurol., 2002, vol. 17, no. 8, pp. 548–554.

    CAS  PubMed  Google Scholar 

  2. Wiest, V., Eisenbarth, I., C. Schmegner, Krone, W., and Assum, G., Somatic NF1 mutation spectra in a family with neurofibromatosis type 1: toward a theory of genetic modifiers, Hum. Mutat., 2003, vol. 22, no. 6, pp. 423–427.

    CAS  PubMed  Google Scholar 

  3. Gutmann, D.H., Ferner, R.E., Listernick, R.H., Korf, B.R., Wolters, P.L., and Johnson, K.J., Neurofibromatosis type 1, Nat. Rev. Dis. Primers, 2017, vol. 3, p. 17 004. https://doi.org/10.1038/nrdp.2017.4

    Article  Google Scholar 

  4. McClatchey, A.I., Neurofibromatosis, Annu. Rev. Pathol. Mech. Dis., 2007, vol. 2, pp. 191–216.

    CAS  Google Scholar 

  5. Monroe, C.L., Dahiya, S., and Gutmann, D.H., Dissecting clinical heterogeneity in neurofibromatosis type 1, Annu. Rev. Pathol. Mech. Dis., 2017, vol. 12, no. 1, pp. 53–74. https://doi.org/10.1146/annurev-pathol-052016-100228

    Article  CAS  Google Scholar 

  6. Williams, V.C., Lucas, J., Babcock, M.A., Gutmann, D.H., Korf, B., and Maria, B.L., Neurofibromatosis type 1 revisited, Pediatrics, 2009, vol. 123, no. 1, pp. 124–133.

    PubMed  Google Scholar 

  7. Chen, H., Bannayan-Riley-Ruvalcaba Syndrome, New York, NY: Springer New York, 2016.

    Google Scholar 

  8. McKeever, K., Shepherd, C.W., Crawford, H., and Morrison, P.J., An epidemiological, clinical and genetic survey of neurofibromatosis type 1 in children under sixteen years of age, Ulster Med. J., 2008, vol. 77, no. 3, pp. 160–163.

    PubMed  PubMed Central  Google Scholar 

  9. Rojnueangnit, K., Xie, J., Gomes, A., Sharp, A., Callens, T., Chen, Y., Liu, Y., Cochran, M., Abbott, M.A., and Atkin, J., High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p. Arg1809: genotype–phenotype correlation, Hum. Mutat., 2015, vol. 36, no. 11, pp. 1052–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Upadhyaya, M., Huson, S.M., Davies, M., Thomas, N., Chuzhanova, N., Giovannini, S., Evans, D.G., Howard, E., Kerr, B., and Griffiths, S., An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c. 2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation, Am. J. Hum. Genet., 2007, vol. 80, no. 1, pp. 140–151.

    CAS  PubMed  Google Scholar 

  11. Cawthon, R.M., Weiss, R., Xu, G., Viskochil, D., Culver, M., Stevens, J., Robertson, M., Dunn, D., Gesteland, R., and O’Connell, P., A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations, Cell, 1990, vol. 62, no. 1, pp. 193–201.

    CAS  PubMed  Google Scholar 

  12. Masocco, M., Kodra, Y., Vichi, M., Conti, S., Kanieff, M., Pace, M., Frova, L., and Taruscio, D., Mortality associated with neurofibromatosis type 1: a study based on Italian death certificates (1995–2006), Orphanet J. Rare Dis., 2011, vol. 6, no. 1, p. 11.

    PubMed  PubMed Central  Google Scholar 

  13. Schreibman, I.R., Baker, M., Amos, C., and McGarrity, T.J., The hamartomatous polyposis syndromes: a clinical and molecular review, Am. J. Gastroenterol., 2005, vol. 100, no. 2, pp. 476–490.

    PubMed  Google Scholar 

  14. Jett, K. and Friedman, J.M., Clinical and genetic aspects of neurofibromatosis 1, Genet. Med., 2010, vol. 12, no. 1, pp. 1–11.

    PubMed  Google Scholar 

  15. Xuan, J., Yu, Y., Qing, T., Guo, L., and Shi, L., Next-generation sequencing in the clinic: promises and challenges, Cancer Lett., 2013, vol. 340, no. 2, pp. 284–295.

    CAS  PubMed  Google Scholar 

  16. Faden, D.L., Asthana, S., Tihan, T., DeRisi, J., and Kliot, M., Whole exome sequencing of growing and non-growing cutaneous neurofibromas from a single patient with neurofibromatosis type 1, PLoS One, 2017, vol. 12, no. 1, e0170 348.

    Google Scholar 

  17. McPherson, J.R., Ong, C.K., Ng, C.C.Y., Rajasegaran, V., Heng, H.L., Yu, W.S.S., Tan, B.K.T., Madhukumar, P., Teo, M.C.C., and Ngeow, J., Whole- exome sequencing of breast cancer, malignant peripheral nerve sheath tumor and neurofibroma from a patient with neurofibromatosis type 1, Cancer Med., 2015, vol. 4, no. 12, pp. 1871–1878.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows– Wheeler transform, Bioinformatics, 2009, vol. 25, no. 14, pp. 1754–1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, X., Wang, A., Walter, V., Patel, N.M., Eberhard, D.A., Hayward, M.C., Salazar, A.H., Jo, H., Soloway, M.G., and Wilkerson, M.D., Combined targeted DNA sequencing in non-small cell lung cancer (NSCLC) using UNCseq and NGScopy, and RNA sequencing using UNCqeR for the detection of genetic aberrations in NSCLC, PLoS One, 2015, vol. 10, no. 6, e0129 280.

    Google Scholar 

  20. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P., Integrative genomics viewer, Nat. Biotechnol., 2011, vol. 29, no. 1, pp. 24–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., and Daly, M., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res., 2010, vol. 20, no. 9, pp. 1297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Eppig, J.T., Blake, J.A., Bult, C.J., Kadin, J.A., Richardson, J.E., and Group, M.G.D., The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease, Nucleic Acids Res., 2015, vol. 43, no. D1, pp. D726–D736.

    CAS  PubMed  Google Scholar 

  23. Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., Van Vooren, S., Moreau, Y., Pettett, R.M., and Carter, N.P., DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources, Am. J. Hum. Genet., 2009, vol. 84, no. 4, pp. 524–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, D.W., Sherman, B.T., and Lempicki, R.A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 2008, vol. 37, no. 1, pp. 1–13.

    PubMed Central  Google Scholar 

  25. Ng, P.C. and Henikoff, S., SIFT: Predicting amino acid changes that affect protein function, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3812–3814.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R., A method and server for predicting damaging missense mutations, Nat. Meth., 2010, vol. 7, no. 4, pp. 248–249.

    CAS  Google Scholar 

  27. Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M., and Shendure, J., A general framework for estimating the relative pathogenicity of human genetic variants, Nat. Genet., 2014, vol. 46, no. 3, p. 310.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanehisa, M. and Goto, S., KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 2000, vol. 28, no. 1, pp. 27–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J., Chang, H.-Y., Dosztányi, Z., El-Gebali, S., and Fraser, M., InterPro in 2017–beyond protein family and domain annotations, Nucleic Acids Res., 2016, vol. 45, no. D1, pp. D190–D199.

    PubMed  PubMed Central  Google Scholar 

  30. Beck, T.F., Mullikin, J.C., Biesecker, L.G., and Program, N.C.S., Systematic evaluation of Sanger validation of next-generation sequencing variants, Clin. Chem., 2016, vol. 62, no. 4, pp. 647–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wallace, M.R., Marchuk, D.A., Andersen, L.B., Letcher, R., Odeh, H.M., Saulino, A.M., Fountain, J.W., Brereton, A., Nicholson, J., and Mitchell, A.L., Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients, Science, 1990, vol. 249, no. 4965, pp. 181–187.

    CAS  PubMed  Google Scholar 

  32. Clementi, M., Barbujani, G., Turolla, L., and Tenconi, R., Neurofibromatosis-1: a maximum likelihood estimation of mutation rate, Hum. Genet., 1990, vol. 84, no. 2, pp. 116–118.

    CAS  PubMed  Google Scholar 

  33. Pasmant, E., Parfait, B., Luscan, A., Goussard, P., Briand-Suleau, A., Laurendeau, I., Fouveaut, C., Leroy, C., Montadert, A., and Wolkenstein, P., Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations?, Eur. J. Hum. Genet., 2015, vol. 23, no. 5, pp. 596–601.

    CAS  PubMed  Google Scholar 

  34. Ingram, D.A., Yang, F.-C., Travers, J.B., Wenning, M.J., Hiatt, K., New, S., Hood, A., Shannon, K., Williams, D.A., and Clapp, D.W., Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo, J. Exp. Med., 2000, vol. 191, no. 1, pp. 181–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, Y., Ghosh, P., Charnay, P., Burns, D.K., and Parada, L.F., Neurofibromas in NF1: Schwann cell origin and role of tumor environment, Science, 2002, vol. 296, no. 5569, pp. 920–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas, L., Kluwe, L., Chuzhanova, N., Mautner, V., and Upadhyaya, M., Analysis of NF1 somatic mutations in cutaneous neurofibromas from patients with high tumor burden, Neurogenetics, 2010, vol. 11, no. 4, pp. 391–400.

    CAS  PubMed  Google Scholar 

  37. Monroe, C.L., Dahiya, S., and Gutmann, D.H., Dissecting clinical heterogeneity in neurofibromatosis type 1, Annu. Rev. Pathol. Mech. Dis., 2017, vol. 12, pp. 53–74.

    CAS  Google Scholar 

  38. Kluwe, L., Friedrich, R.E., Korf, B., Fahsold, R., and Mautner, V.F., NF1 mutations in neurofibromatosis 1 patients with plexiform neurofibromas, Hum. Mutat., 2002, vol. 19, no. 3, p. 309. https://doi.org/10.1002/humu.9018

    Article  PubMed  Google Scholar 

  39. De Schepper, S., Maertens, O., Callens, T., Naeyaert, J.-M., Lambert, J., and Messiaen, L., Somatic mutation analysis in NF1 café au lait spots reveals two NF1 hits in the melanocytes, J. Invest. Dermatol., 2008, vol. 128, no. 4, pp. 1050–1053.

    CAS  PubMed  Google Scholar 

  40. Boyd, K.P., Gao, L., Feng, R., Beasley, M., Messiaen, L., Korf, B.R., and Theos, A., Phenotypic variability among café-au-lait macules in neurofibromatosis type 1, J. Am. Acad. Dermatol., 2010, vol. 63, no. 3, pp. 440–447.

    PubMed  PubMed Central  Google Scholar 

  41. Vandenbroucke, I., Van Oostveldt, P., Coene, E., De Paepe, A., and Messiaen, L., Neurofibromin is actively transported to the nucleus, FEBS Lett., 2004, vol. 560, nos. 1–3, pp. 98–102.

    CAS  PubMed  Google Scholar 

  42. Li, C., Cheng, Y., Gutmann, D.A., and Mangoura, D., Differential localization of the neurofibromatosis 1 (NF1) gene product, neurofibromin, with the F-actin or microtubule cytoskeleton during differentiation of telencephalic neurons, Dev. Brain. Res., 2001, vol. 130, no. 2, pp. 231–248.

    CAS  Google Scholar 

  43. Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H., Classical nuclear localization signals: definition, function, and interaction with importin α, J. Biol. Chem., 2007, vol. 282, no. 8, pp. 5101–5105.

    CAS  PubMed  Google Scholar 

  44. Koliou, X., Fedonidis, C., Kalpachidou, T., and Mangoura, D., Nuclear import mechanism of neurofibromin for localization on the spindle and function in chromosome congression, J. Neurochem., 2016, vol. 136, no. 1, pp. 78–91.

    CAS  PubMed  Google Scholar 

  45. Balla, B., Árvai K., Horváth, P., Tobiás, B., Takács, I., Nagy, Z., Dank, M., Fekete, G., Kósa, J.P., and Lakatos P., Fast and robust next-generation sequencing technique using ion torrent personal genome machine for the screening of neurofibromatosis type 1 (NF1) gene, J. Mol. Neurosci., 2014, vol. 53, no. 2, pp. 204–210.

    CAS  PubMed  Google Scholar 

  46. Maruoka, R., Takenouchi, T., Torii, C., Shimizu, A., Misu, K., Higasa, K., Matsuda, F., Ota, A., Tanito, K., and Kuramochi, A., The use of next-generation sequencing in molecular diagnosis of neurofibromatosis type 1: a validation study, Genet. Test. Mol. Biomarkers, 2014, vol. 18, no. 11, pp. 722–735.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gave thanks for the family involved in project and Pasteur Institute of Iran to support this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh Rahimi.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participant were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from the participant involved in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edris Sharif Rahmani, Azarpara, H., Abazari, M.F. et al. Novel Mutation C.7348C>T in NF1 Gene Identified by Whole-Exome Sequencing in Patient with Overlapping Clinical Symptoms of Neurofibromatosis Type 1 and Bannayan–Riley–Ruvalcaba Syndrome. Cytol. Genet. 54, 353–362 (2020). https://doi.org/10.3103/S0095452720040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720040106

Keywords:

Navigation