Skip to main content
Log in

Comparative Genetic Characteristics of the Russian and Belarusian Populations of Wisent (Bison bonasus), North American Bison (Bison bison) and Cattle (Bos taurus)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

A comparative study of the allele pool and the genetic structure of two Russian and one Belarusian populations of the wisent Bison bonasus against the representatives of the species of Bison bison and the genus Bos taurus was carried out. Russian populations were represented by samples of the Oka State Natural Biosphere Reserve (n = 42) and the Prioksko-Terrasny Nature Biosphere Reserve (n = 69), the Belarusian population was represented by samples of the Reserve “Belovezhskaya Pushcha” (n = 42), bison samples (n = 8) and cattle (n = 55) were used as an outgroup. The analysis of the mtDNA D-loop 630 bp fragment polymorphism for the presence of bison and cattle haplotypes, was performed. It was shown that there was a single haplotype for all wisent (Bison bonasus) which was different from the sequences of bison (Bison bison) and cattle. The analysis of population genetic parameters, calculated using 11 microsatellite markers, showed reduced diversity in wisent (Bison bonasus) groups compared to bison (Bison bison) and cattle. The largest number of monomorphic loci as well as the absence of private alleles were found in the group of Belarusian wisent. The analysis of the DJost pairwise genetic distances allowed us to establish clear genetic differentiation of the wisent from the outgroups. This fact was also confirmed by PCA analysis, carried out in the context of population identity and the analysis of population structure which demonstrated some proximity of bison (Bison bison) to wisent (Bison bonasus), which is due to their belonging to the same genus. The data obtained from this study showed differentiation between wisent (Bison bonasus) from bison (Bison bison) and cattle. It can be used in assessing the population genetic parameters of wisent, identifying and eliminating hybrid individuals. It also can be used in developing strategies and measures for the preservation and improvement of the wisent genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Flint, V.E., Belousova, I.P., Pererva, V.I., Kazmin, E.G., Kiseleva, V.D., Kudryavtsev, I.V., Pirozhkov, N.V., and Sipko, T.G., Bison Conservation Strategy in Russia, World Wide Fund for Nature (WWF), Moscow, Russia, 2002. https://wwf.ru/upload/iblock/1d0/zubr.pdf .

  2. European Bison Pedigree Book, Raczynski, J., Ed., Białowieża, 2017.

    Google Scholar 

  3. Slatis, M.A., An analysis of inbreeding in the European bison, Genetics, 1960, vol. 45, pp. 275–287. www.ncbi.nlm. nih.gov/pmc/articles/PMC1210050/pdf/275.pdf.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pucek, Z., Bielousova, I.P., Krasinska, M., Krasinski, Z.A., and Olech, W., European Bison. Status Survey and Conservation Action Plan, IUCN/SSC Bison Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK, 2004, p. 54. https://portals.iucn.org/library/ efiles/documents/1contants.pdf .

  5. Kozlo, P. and Nikiforov, M., Road map for the Białowieża bison, Sci. Innovation., 2013, vol. 4, no. 122, pp. 12–16.

    Google Scholar 

  6. Krasinska, M. and Krasinski, Z.A., European Bison: The Nature Monograph, 2013. https://doi.org/10.1007/978-3-642-36555-3

  7. Tokarska, M., Bunevich, A.N., Demontis, D., Sipko, T., Perzanowski, K., Baryshnikov, G., Kowalczyk, R., Voitukhovskaya, Y., Wojcik, J.M., Marczuk, B., Ruczynska, I., and Pertoldi, C., Genes of the extinct Caucasian bison still roam the Białowieża Forest and are the source of genetic discrepancies between Polish and Belarusian populations of the European bison, Bison bonasus,Biol. J. Linn. Soc., 2015, vol. 114, no. 4, pp. 752–763. https://doi.org/10.1111/bij.12470

    Article  Google Scholar 

  8. Olech, W., Influence of individual inbred and mother’s inbred on calves survival in European bison (Bison bonasus), Rozpr. Nauk. Mon. Wyd SGGW, Warszawa, 2003.

    Google Scholar 

  9. Tokarska, M., Pertoldi, C., Kowalczyk, R., and Perzanowski, K., Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery, Mamm. Rev., 2011, vol. 41, no. 2, pp. 151–162. https://doi.org/10.1111/j.1365-2907.2010.00178.x

    Article  Google Scholar 

  10. Gasparski, J.M., Investigations on the blood groups of Wisents (Bison bonasus) and hybrids in comparison with the blood groups of cattle, in Blood Groups of Animals, Matousek, J., Ed., Dordrecht: Springer, 1965, pp. 93–97. https://doi.org/10.1007/978-94-017-4453-9_12

  11. Sipko, T.P., Rautian, G.S., Udina, I.G., and Takitskaia, T.A., Polymorphism of biochemical markers in European bison (Bison bonasus), Genetika, 1996, vol. 32, no. 3, pp. 400–405.

    CAS  PubMed  Google Scholar 

  12. Babik, W., Kawalko, A., Wojcik, J.M., and Radwan, J., Low major histocompatibility complex class I(MHC I) variation in the European bison (Bison bonasus), J. Hered., 2012, vol. 103, no. 3, pp. 349–359. https://doi.org/10.1093/jhered/ess005

    Article  CAS  PubMed  Google Scholar 

  13. Udina, I.G. and Shaikhaev, G.O., Restriction fragment length polymorphism (RFLP) of exon 2 of the MhcBibo-DRB3 gene in European bison Bison bonasus,Acta Theriol., 1998, vol. 5, pp. 75–82.

    Article  Google Scholar 

  14. Radwan, J., Kawalko, A., Wojcik, J.M., and Babik, W., MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus,Mol. Ecol., 2007, vol. 16, no. 3, pp. 531–540. https://doi.org/10.1111/j.1365-294X.2006.03179.x

    Article  CAS  PubMed  Google Scholar 

  15. Burzynska, B. and Topczewski, J., Genotyping of Bison bonasus kappa-casein gene following DNA sequence amplification, Anim. Genet., 1995, vol. 26, no. 5, pp. 335–336. https://doi.org/10.1111/j.1365-2052.1995.tb02669.x

    Article  CAS  PubMed  Google Scholar 

  16. Udina, I.G., Badagueva, I.N., Sulimova, G.E., and Zakharov-Gezekhus, I.A., Distribution of the kappa casein gene alleles in the bison (Bison bonasus) population, Genetika, 1996, vol. 31, no. 12, pp. 1704–1706.

    Google Scholar 

  17. Burzyńska, B., Olech, W., and Topczewski, J., Phylogeny and genetic variation of the European bison Bison bonasus based on mitochondrial DNA D-loop sequences, Acta Theriol., 1999, vol. 44, no. 3, pp. 253–262. https://pdfs.semanticscholar.org/698d/ 92ff8f4c43d0985b87218cf4f265fc9dd940.pdf.

    Article  Google Scholar 

  18. Ward, T.J., Bielawski, J.P., Davis, S.K., Templeton, J.W., and Derr, J.N., Identification of domestic cattle hybrids in wild cattle and bison species: a general approach using mtDNA markers and the parametric bootstrap, Anim. Conserv., 1999, vol. 2, pp. 51–57. https://doi.org/10.1111/j.1469-1795.1999.tb00048.x

    Article  Google Scholar 

  19. Wójcik, J.M., Kawalko, A., Tokarska, M., Jaarola, M., Vallenback, P., and Pertoldi, C., Post-bottleneck mtDNA diversity in a free-living population of European bison Bison bonasus. Implications for conservation, J. Zool., 2008, vol. 277, pp. 81–87.https://doi.org/10.1111/j.1469-7998.2008.00515.x

    Article  Google Scholar 

  20. Yudin, N.S., Kulikov, I.V., Gunbin, K.V., Aitnazarov, R.B., Kushnir, A.V., Sipko, T.P., and Moshkin, M.P., Detection of mitochondrial DNA from domestic cattle in European bison (Bison bonasus) from the Altai Republic in Russia, Anim. Genet., 2012, vol. 43, no. 3, p. 362. https://doi.org/10.1111/j.1365-2052.2011.02261.x

    Article  CAS  PubMed  Google Scholar 

  21. Tiedemann, R., Nadlinger, K., and Pucek, Z., Mitochondrial DNA-RFLP analysis reveals low levels of genetic variation in European bison Bison bonasus,Acta Theriol., 1998, vol. 5, pp. 83–87. http://rcin.org.pl/ Content/12827/BI002_2613_Cz-40-2_Acta-T42-Supp5-83-87_o.pdf.

    Article  Google Scholar 

  22. Wilson, G.A. and Strobeck, C., The isolation and characterization of microsatellite loci in bison, and their usefulness in other artiodactyls, Anim. Genet., 1999, vol. 30, pp. 225–244. https://doi.org/10.1046/j.1365-2052.1999.00404-1.x

  23. Tokarska, M., Kawalko, A., Wojcik, J.M., and Pertoldi, C., Genetic variability in the European bison (Bison bonasus) population from Białowieża forest over 50 years, Biol. J. Linn. Soc., 2009, vol. 97, no. 4, pp. 801–809. https://doi.org/10.1111/j.1095-8312.2009.01203.x

    Article  Google Scholar 

  24. Luenser, K., Fickel, J., Lehnen, A., and Speck, S., Low level of genetic variability in European bison (Bison bonasus) from the Białowieża National Parkin Poland, Eur. J. Wild Life Res., 2005, vol. 51, pp. 84–87. https://doi.org/10.1007/s10344-005-0081-4

    Article  Google Scholar 

  25. Gralak, B., Krasinska, M., Niemczewski, C., Krasinski, Z.A., and Zurkowski, M., Polymorphism of bovine microsatellite DNA sequences in the lowland European bison, Acta Theriol., 2004, vol. 49, pp. 449–456. https://doi.org/10.1007/BF03192589

    Article  Google Scholar 

  26. Dotsev, A.V., Volkova, V.V., Kharzinova, V.R., Kostyunina, O.V., Zinovieva, N.A., Aksenova, P.V., and Mnatsekanov, R.A., Study of allele pool and genetic structure of Russian population of lowland-Caucasian line of European bison (Bison bonasus), Russ. J. Genet.: Appl. Res., 2018, vol. 8, no. 1, pp. 31–36. https://doi.org/10.1134/S2079059718010057

    Article  Google Scholar 

  27. Węcek, K., Hartmann, S., Paijmans, J.L.A., Taron, U., Xenikoudakis, G., Cahill, J.A., Heintzman, P.D., Shapiro, B., Baryshnikov, G., Bunevich, A.N., Crees, J.J., Dobosz, R., Manaserian, N., Okarma, H., Tokarska, M., Turvey, S.T., Wójcik, J.M., Żyła, W., Szymura, J.M., Hofreiter, M., and Barlow, A., Complex admixture preceded and followed the extinction of wisent in the wild, Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 598–612. https://doi.org/10.1093/molbev/msw254

    Article  CAS  PubMed  Google Scholar 

  28. Wang, K., Wang, L., Lenstra, J.A., Jian, J., Yang, Y., Hu, Q., Lai, D., Qiu, Q., Ma, T., Du, Z., Abbott, R., and Liu, J., The genome sequence of the wisent (Bison bonasus), Gigascience, 2017, vol. 6, no. 4, pp. 1–5. https://doi.org/10.1093/gigascience/gix016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Camilla, M.U., Investigating genetic variability within specific indigenous Indonesian cattle breeds, Other Thesis, SLU, 2008. https://stud.epsilon.slu.se/11092/ 1/mannich_c_170929.pdf

  30. Okonechnikov, K., Golosova, O., and Fursov, M., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  31. Leigh, J.W. and Bryant, D., PopART: Full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  32. Peakall, R. and Smouse, P.E., GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keenan, K., McGinnity, P., Cross, T.F., Crozier, W.W., and Prodohl, P.A., diveRsity: An R packagefor the estimation and exploration of population genetics parameters and their associated errors, Methods Ecol. Evol., 2013, vol. 4, pp. 782–788. https://doi.org/10.1111/2041-210X.12067

    Article  Google Scholar 

  34. Weir, B.S. and Cockerham, C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

    Article  CAS  PubMed  Google Scholar 

  35. Jost, L., GST and its relatives do not measure differentiation, Mol. Ecol., 2008, vol. 17, pp. 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x

    Article  PubMed  Google Scholar 

  36. Huson, D.H. and Bryant, D., Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 2006, vol. 23, pp. 254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  37. Jombart, T., adegenet: a R package for the multivariate analysis of genetic markers, Bioinformatics, 2008, vol. 24, pp. 1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  38. Wickham, H., ggplot2: Elegant Graphics for Data Analysis, New York, NY: Springer-Verlag, 2009. https://doi.org/10.1007/978-0-387-98141-3

  39. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959. www.genetics.org/content/155/2/945

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Francis, R.M., pophelper: an R package and web app to analyse and visualize population structure, Mol. Ecol. Res., 2017, vol. 17, pp. 27–32. https://doi.org/10.1111/1755-0998.12509

    Article  CAS  Google Scholar 

  41. Halbert, N.D., Ward, T.J., Schnabel, R.D., Taylor, J.F., and Derr, J.N., Conservation genomics: disequilibrium mapping of domestic cattle chromosomal segments in North American bison populations, Mol. Ecol., 2005, vol. 14, pp. 2343–2362. https://doi.org/10.1111/j.1365-294x.2005.02591.x

  42. Cronin, M.A., MacNeil M.D., Vu N., Leesburg V., Blackburn H.D., and Derr J.N., Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies, J. Hered., 2013, vol. 104, no. 4, pp. 500–509. https://doi.org/10.1093/jhered/est030

    Article  CAS  PubMed  Google Scholar 

  43. Glazko, V.I., Zhelonkina, G.M., Sipko, T.P., Kushnir, A.V., and Glazko, T.T., Genetic relationships of bovine species using the example of Bos taurus, Bison bonasus and Bison bison, Izv.Timiryazevskoi S.-Kh. Akad., 2009, vol. 3, pp. 174–180. https://elibrary.ru/download/elibrary_12886565_70233590.pdf.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out with the financial support of the Russian Foundation for Basic Research, project no. 18-516-00008 and the Belarusian Republican Foundation for Basic Research, project no. B18R-165.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Kostyunina, M. E. Mikhailova, A. V. Dotsev, I. I. Zemlyanko, V. V. Volkova, M. S. Fornara, N. A. Akopyan, I. M. Okhlopkov, P. V. Aksenova, E. L. Tsibizova, R. A. Mnatsekanov or N. A. Zinovieva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyunina, O.V., Mikhailova, M.E., Dotsev, A.V. et al. Comparative Genetic Characteristics of the Russian and Belarusian Populations of Wisent (Bison bonasus), North American Bison (Bison bison) and Cattle (Bos taurus). Cytol. Genet. 54, 116–123 (2020). https://doi.org/10.3103/S0095452720020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720020085

Keywords:

Navigation