Skip to main content
Log in

IRAP Analysis of Transgenic Wheat Plants with a Double-Stranded RNA Suppressor of the Proline Dehydrogenase Gene

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The polymorphism level of DNA regions flanked by inverted LTR retrotransposon repeats has been analyzed by the IRAP method in genetically modified wheat plants that contained a double-stranded RNA suppressor of the proline dehydrogenase gene and that had been obtained by Agrobacterium-mediated transformation in an in vitro culture. No DNA polymorphism was detected in the transgenic plants when highly efficient primers for Sukkula, Sabrina, Wham, Nikita, and Wilma1 retrotransposons were used. We did not register the disappearance of amplicons in the DNA profiles of PCR in the experiment, and this may be indicative of the absence of rearrangements in the primer annealing sites and in the loci studied. The emergence of new amplicons was not observed in the spectra of DNA amplification products, which is indicative of the absence of activation of the transposon activity of mobile genetic elements in transgenic plants with a double-stranded RNA suppressor of the proline dehydrogenase gene. To expand the spectrum of amplicons in PCR products of the samples studied, we tested a method that involved the combined use of IRAP primers for different retrotransposons in a single reaction. IRAP primer pairs were selected experimentally, but the use of this method did not reveal the disappearance or emergence of polymorphic fragments. The absence of DNA polymorphism in transgenic plants with a double-stranded RNA suppressor of the proline dehydrogenase gene may be due to the phenomenon of RNA interference that suppresses retrotransposon activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abdul, R., Ma, Z., and Wang, H., Genetic transformation of wheat (Triticum aestivum L.): a review, Triticeae Genom. Genet., 2010, no. 4, pp. 1–7. https://doi.org/10.5376/tgg.2010.01.0002

  2. Hiei, Y., Ishida, Y., and Komari, T., Progress of cereal transformation technology mediated by Agrobacterium tumefaciens, Front. Plant Sci., 2014, no. 5, pp. 1–11. https://doi.org/10.3389/fpls.2014.00628

  3. El-Mangoury, K., Abdrabou, R., Yasien, M., and Fahmy, A., Optimization of a transformation system for three Egyptian wheat cultivars using immature embryo-derived callus via microprojectile bombardment, Arab. J. Biotech., 2006, no. 1, pp. 175–188.

  4. Ding, L., Li, S., Gao, J., Wang, Y., Yang, G., and He, G., Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat, Mol. Biol. Rep., 2009, no. 36, pp. 29–36. https://doi.org/10.1007/s11033-007-9148-5

    Article  PubMed  Google Scholar 

  5. Jones, H., Doherty, A., and Wu, H., Review of methodologies and a protocol for the Agrobacterium mediated transformation of wheat, Plant Methods, 2005, no. 1, pp. 1–5. https://doi.org/10.1186/1746-4811-1-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choi, H.W., Lemaux, P.G., and Cho, M.-J., Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants, Crop Sci., 2000, no. 40, pp. 524–533.

  7. Choi, H.W., Lemaux, P.G., and Cho, M.-J., High frequency of cytogenetic aberration in transgenic oat (Avena sativa L.) plants, Plant Sci., 2001, no. 160, pp. 763–772. https://doi.org/10.1016/S0168-9452(01)00369-7

    Article  PubMed  Google Scholar 

  8. Labra, M., Savini, C., Bracale, M., Pelucchi, N., Colombo, L., Bardini, M., and Sala, F., Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens, Plant Cell Rep., no. 20, pp. 325–330.

    Article  CAS  Google Scholar 

  9. Enikeev, A.G., Kopytina, T.V., Semenova, L.A., Natyaganova, A.V., Gamanetz, L.V., and Volkova, O.D., Agrobacterium transformation as complex biotical stressing factor, J. Stress Physiol. Biochem., 2008, vol. 4, no. 1, pp. 11–19.

    Google Scholar 

  10. Filleur, S., Dorbe, M.F., and Cerezo, M., An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake, FEBS Lett., 2001, vol. 489, no. 23, pp. 220–224.

    Article  CAS  PubMed  Google Scholar 

  11. Flugge, U.I. and Klosgen, R.B., Characterization of a T-DNA insertion mutant for the protein import receptor at Toc33 from chloroplasts, Mol. Genet. Genom., 2004, vol. 272, no. 4, pp. 379–396.

    Article  Google Scholar 

  12. Gaspar, Y., Nam, J., Schultz, C., Lee, L., Gilson, P., Gelvin, S., and Bacic, A., Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation, Plant Physiol., 2004, vol. 135, no. 4, pp. 2162–2171. https://doi.org/10.1104/pp.104.045542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leonard, J.M., Bollmann, S.R., and Hays, J.B., Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function, Plant Physiol., 2003, vol. 133, no. 1, pp. 328–338. https://doi.org/10.1104/pp.103.023952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muller, K., Heller, H., and Doerfier, W., Foreign DNA integration. Genome-wide perturbations of methylation and transcription in the recipient genomes, J. Biol. Chem., 2001, no, 276, pp. 14271–14278. https://doi.org/10.1074/jbc.M009380200

    Article  PubMed  Google Scholar 

  15. Matzke, A.J.M. and Matzke, M.A., Position effects and epigenetic silencing of plant transgenes, Curr. Opin. Plant Biol., 1998, no. 1, pp. 142–148. https://doi.org/10.1016/S1369-5266(98)80016-2

    Article  CAS  PubMed  Google Scholar 

  16. Matzke, M.A., Mette, M.F., and Matzke, A.J.M., Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates, Plant Mol. Biol., 2000, no. 43, pp. 401–415.

  17. Kidwell, M.G. and Lisch, D.R., Hybrid genetics. Transposons unbound, Nature, 1998, no. 393, pp. 22–23. https://doi.org/10.1038/29889

    Article  CAS  PubMed  Google Scholar 

  18. Kidwell, M.G. and Lisch, D.R., Transposable elements and host genome evolution, Trends Ecol. Evol., 2000, no. 15, pp. 95–99.https://doi.org/10.1016/S0169-5347(99)01817-0

    Article  CAS  Google Scholar 

  19. Kumar, A. and Bennetzen, J., Plant retrotransposons, Annu. Rev. Genet., 1999, no. 33, pp. 479–532. https://doi.org/10.1146/annurev.genet.33.1.479

    Article  CAS  PubMed  Google Scholar 

  20. Todorovska, E., Retrotransposons and their role in plant-genome evolution, Biotechnol. Biotechnol. Equip., 2007, no. 21, pp. 294–305. https://doi.org/10.1080/13102818.2007.10817464

    Article  CAS  Google Scholar 

  21. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., and Schulman, A., IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques, Theor. Appl. Genet., 1999, vol. 98, no. 5, pp. 704–711.

    Article  CAS  Google Scholar 

  22. Kalendar, R. and Schulman, A., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc., 2006, vol. 1, no. 5, pp. 2478–2484. https://doi.org/10.1038/nprot.2006.377

    Article  CAS  PubMed  Google Scholar 

  23. Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P., and Schulman, A., Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques, Mol. Gen. Genom., 2003, no. 269, pp. 464–474. https://doi.org/10.1007/s00438-003-0850-2

    Article  CAS  PubMed  Google Scholar 

  24. Schnell, J., Steele, M., Bean, J., Neuspiel, M., Girard, C., Dormann, N., Pearson, C., Savoie, A., Bourbonniere, L., and Macdonald, P., A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments, Transgen. Res., 2015, vol. 24, no. 1, pp. 1–17. https://doi.org/10.1007/s11248-014-9843-7

    Article  CAS  Google Scholar 

  25. Kaya, Y., Yilmaz, S., Gozukirmizi, N., and Huyop, F., Evaluation of transgenic Nicotiana tabacum with dehE gene using transposon based IRAP markers, Am. J. Plant Sci., 2013, vol. 4, no. 8A, pp. 41–44. https://doi.org/10.4236/ajps.2013.48A005

    Article  CAS  Google Scholar 

  26. Rao, J., Yang, L., Guo, J., Quan, S., Chen, G., Zhao, X., Zhang, D., and Shi, J., Development of event-specific qualitative and quantitative PCR detection methods for the transgenic maize BVLA430101, Eur. Food Res. Technol., 2016, vol. 242, no. 8, pp. 1277–1284.

    Article  CAS  Google Scholar 

  27. Bavol, A.V., Dubrovna, O.V., and Morgun, B.V., Genetic transformation and analysis of wheat transgenic cell lines by IRAP-PCR, Biotechnol. Acta, 2013, vol. 6, no. 6, pp. 113–119.

    Article  Google Scholar 

  28. Bhatt, A., Lister, C., Crawford, N., and Dean, C., The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines, Plant Cell, 1998, no. 10, pp. 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, R., Guo, W., Wang, X., Wang, X., Zhuang, T., Clarke, J., and Liu, B., Unintended consequence of plant transformation: biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae, Plant Cell Rep., 2009, vol. 28, no. 7, pp. 1043–1051. https://doi.org/10.1007/s00299-009-0704-4

    Article  CAS  PubMed  Google Scholar 

  30. Yuzbasioglu, G., Marakli, S., and Gozukirmizi, N., Screening of Oryza sativa L. for hpt gene and evaluation of hpt positive samples using Houba retransposon-based IRAP markers, Turk. J. Agric. Res., 2017, vol. 4, no. 1, pp. 59–64. https://doi.org/10.19159/tutad.300702

    Article  Google Scholar 

  31. Dubrovna, O.V., Goncharuk, O.M., and Velikozhon, L.G., IRAP-analysis of genetically modified wheat plants obtained by Agrobacterium-mediated transformation in vitro, Fiziol. Rast. Genet., 2017, vol. 49, no. 2, pp. 110–119. https://doi.org/10.15407/frg2017.02.110

    Article  Google Scholar 

  32. Bavol, A.V., Dubrovna, O.V., Goncharuk, O.M., and Voronova, S.S., Agrobacterium-mediated transformation of wheat using calli culture, Fakt. Eksp. Evol. Organism., 2014, no. 15, pp. 16–19.

  33. Trebichalsko, A., Kalendar, R., Schulman, A., Stra-tula, O., Galova, Z., Balazova, Z., and Chnapek, M., Detection of genetic relationships among spring and winter triticale (Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers, Czech J. Genet. Plant Breed., 2013, no. 49, pp. 171–174.

  34. Bavol, A.V., Velikozhon, L.G., Pykalo, S.V., and Dubrovna, O.V., IRAP-analysis of triticale plants regenerants, resistant to water deficit, Fakt. Eksp. Evol. Organism., 2016, no. 19, pp. 73–78.

  35. Bhattm, A.M., Lister, C., Crawford, N., and Dean, C., The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines, Plant Cell, 1998, no. 10, pp. 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Casacuberta, J.M. and Santiago, N., Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes, Gene, 2003, no. 311, pp. 1–11. https://doi.org/10.1016/S0378-1119(03)00557-2

    Article  CAS  PubMed  Google Scholar 

  37. Lister, R., O’Malley R., Tonti-Filippini J., Gregory B., Berry C., Miller A., Ecker J. Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell, 2008, no. 133, pp. 523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choulet, F., Wicker, T., Rustenholz, C., Paux, E., Salse, J., Leroy, P., Schlub, S., Le Paslier, M., Magdelenat, G., Gonthier, C., Couloux, A., Budak, H., Breen, J., Pumphrey, M., Liu, S., Kong, X., Jia, J., Gut, M., Brunel, D., Anderson, J., Gill, B., Appels, R., Keller, B., and Feuillet, C., Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces, Plant Cell, 2010, vol. 22, no. 6, pp. 1686–1701. https://doi.org/10.1105/tpc.110.074187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vicient, C.M., Transcriptional activity of transposable elements in maize, BMC Genomics, 2010, vol. 11, no. 601, pp. 1–10. https://doi.org/10.1186/1471-2164-11-601

    Article  CAS  Google Scholar 

  40. Tishchenko, O.M., Komisarenko, A.G., Mykhalska, S.I., Sergeeva, L.E., Adamenko, N.I., Morgun, B.V., and Kochetov, A.V., Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using LBA4404 strain harboring binary vector pBI2E with dsRNA-suppressor of proline dehydrogenase gene, Cytol. Genet., 2014, vol. 48, no. 4, pp. 218–226. https://doi.org/10.3103/S0095452714040094

    Article  Google Scholar 

  41. Martienssen, R.A. and Colot, V., DNA methylation and epigenetic inheritance in plants and filamentous fungi, Science, 2001, vol. 293, pp. 1070–1074. https://doi.org/10.1126/science.293.5532.1070

    Article  CAS  PubMed  Google Scholar 

  42. Mello, C.C. and Conte, D., Jr., Revealing the world of RNA interference, Nature, 2004, vol. 431, pp. 338–342. https://doi.org/10.1038/nature02872

    Article  CAS  PubMed  Google Scholar 

  43. Meister, G. and Tuschl, T., Mechanisms of gene silencing by double-stranded RNA, Nature, 2004, vol. 431, pp. 343–9.

    Article  CAS  PubMed  Google Scholar 

  44. Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I., and Moazed, D., RNAi-mediated targeting of heterochromatin by the RITS complex, Science, 2004, vol. 303, no. 5658, pp. 672–676. https://doi.org/10.1126/science.1093686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J., Transcriptional silencing and promoter methylation triggered by double-stranded RNA, EMBO J., 2000, pp. 5194–5201. https://doi.org/10.1093/emboj/19.19.5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gvozdev, V.A., Mobile genes and RNA interference, Genetics, 2003, vol. 39, pp. 151–156.

    CAS  Google Scholar 

  47. Makarova, Yu.A. and Cramers, D.A., Noncoding RNA, Biochemistry, 2007, vol. 72, no. 11, pp. 1427–1448.

    Google Scholar 

  48. Alder, M.N., Dames, S., Gaudet, J., and Mango, S.E., Gene silencing in Caenorhabditis elegans by transitive RNA interference, RNA, 2003, vol. 9, pp. 25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H., and Fire, A., On the role of RNA amplification in dsRNA-triggered gene silencing, Cell, 2001, vol. 107, pp. 465–476.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the budget program of support for the development of priority areas of scientific research (KPKVK 6541230) and a thematic grant from the National Academy of Sciences of Ukraine, number of state registration 0116U000173.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. V. Morgun or O. V. Dubrovna.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Semenova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgun, B.V., Dubrovna, O.V. IRAP Analysis of Transgenic Wheat Plants with a Double-Stranded RNA Suppressor of the Proline Dehydrogenase Gene. Cytol. Genet. 53, 384–391 (2019). https://doi.org/10.3103/S0095452719050116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719050116

Keywords:

Navigation