Skip to main content
Log in

Expression Levels of Genes Ptgs2 and Tgfb1 in Esophageal Burns and When Introducing Melanin

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

In this histological study, the degree of esophageal burn was confirmed and the effect of melanin on healing processes, namely, faster periods of recovery of damaged esophageal tissues, was assessed. Higher expression of genes Ptgs2 and Tgfb1 involved in the development of inflammation in blood and esophageal mucosa under conditions of second-degree alkali esophageal burn (AEB 2) was shown. After administration of melanin, the expression levels of genes Ptgs2 and Tgfb1 in blood and esophageal tissues decreased compared to those in the AEB 2 group. It was found that the content of proinflammatory (IL-1β, TNF-α) cytokines in blood and esophageal tissues increased in AEB 2. After administration of melanin, the content of proinflammatory cytokines decreased compared to those of the AEB 2 group. The obtained results demonstrated the anti-inflammatory properties of this compound, showing the prospect of using melanin as a substance contributing to chemical esophageal burn healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bonucci, J., Gragnani, A., Trincado, M.M., Vincentin, V., Correa, S.A., and Ferreira, L.M., The role of vitamin C in the gene expression of oxidative stress markers in fibroblasts from burn patients, Acta Cir. Bras., 2018, vol. 33, no. 8, pp. 703–712. https://doi.org/10.1590/s0102-865020180080000006

    Article  PubMed  Google Scholar 

  2. Xu, H.T., Guo, J.C., Liu, H.Z., and Jin, W.W., A time-series analysis of severe burned injury of skin gene expression profiles, Cell Physiol. Biochem., 2018, vol. 49, no. 4, pp. 1492–1498. https://doi.org/10.1159/000493451

    Article  CAS  PubMed  Google Scholar 

  3. Chornenka, N.M., Raetska, Ya.B., Savchuk, O.M., Torgalo, E.O., Beregova, T.V., and Ostapchenko, L.I., Correction parameters of endogenous intoxication in experimental burn disease at the stage of toxemia, Res. J. Pharm., Biol. Chem. Sci., 2016, vol. 5, pp. 7–12.

    Google Scholar 

  4. Kurowski, J.A. and Kay, M., Caustic ingestions and foreign bodies ingestions in pediatric patients, Pediatr. Clin. North. Am., 2017, vol. 64, no. 3, pp. 507–524. https://doi.org/10.1016/j.pcl.2017.01.004

    Article  PubMed  Google Scholar 

  5. Tiwari, V.K., Burn wound: how it differs from other wounds? Indian J. Plast. Surg., 2012, vol. 45, pp. 364–373. https://doi.org/10.4103/0970-0358.101319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matthew, P.R. and Leopoldo, C.C., Burn wound healing and treatment: review and advancements, Crit. Care, 2015, vol. 22, pp. 12–20. https://doi.org/10.1186/s13054-015-0961-2

    Article  Google Scholar 

  7. Hellmann, J., Tang, Y., Zhang, M.J., and Hai, T., Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation, Prostaglandins Other Lipid Mediat., 2015, vol. 3, pp. 116–117. https://doi.org/10.1016/j.prostaglandins.2015.01.001

    Article  CAS  Google Scholar 

  8. Silva, N.T., Quintana, H.T., Bortolin, J.A., Ribeiro, D.A., and de Oliveira, F., Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in Wistar rats, J. Burn. Care Res., 2015, vol. 36, no. 3, pp. 428–433. https://doi.org/10.1097/BCR.0000000000000122

    Article  PubMed  Google Scholar 

  9. Li, N., Hu, D.H., Wang, Y.J., and Hu, X.L., Effects of adipose-derived stem cells on renal injury in burn mice with sepsis, Zhonghua Shao Shang Za Zhi, 2013, vol. 29, no. 3, pp. 249–254. https://doi.org/10.3760/cma.j.issn.1009-2587.2013.03.007

    Article  PubMed  Google Scholar 

  10. Wu, K.K., Cyclooxygenase 2 induction: molecular mechanism and pathophysiologic roles, J. Lab. Clin. Med., 1996, vol. 128, pp. 242–245. https://doi.org/10.1016/S0022-2143(96)90023-2

    Article  CAS  PubMed  Google Scholar 

  11. Tsai, S.C., Liang, Y.H., Chiang, J.H., Liu, F.C., and Lin, W.H., Anti-inflammatory effects of Calophyllum inophyllum L. in RAW264.7 cells, Oncol. Rep., 2012, vol. 28, no. 3, pp. 1096–1102. https://doi.org/10.3892/or.2012.1873

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Zuo, G.Q., Zhao, L., Chen, Y.X., Ruan, X.Z., and Zuo, D.Y., Effect of inflammatory stress on hepatic cholesterol accumulation and hepatic fibrosis in C57BL/6J mice, Zhonghua Shao Shang Za Zhi., 2013, vol. 21, no. 2, pp.116–120. https://doi.org/10.3760/cma.j.issn.1007-3418.2013.02.010

    Article  CAS  Google Scholar 

  13. Cufí, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Martin-Castillo, B., Joven, J., and Menendez, J.A., Metformin against TGF-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis, Cell Cycle, 2010, vol. 9, no. 22, pp. 4461–4468. https://doi.org/10.4161/cc.9.22.14048

    Article  CAS  PubMed  Google Scholar 

  14. Paunel-Görgülü, A., Kirichevska, T., and Lögters, T., Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis, Mol. Med., 2012, vol. 18, no. 1, pp. 325–335. https://doi.org/10.2119/molmed.2011.00380

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, J., Tu, J.J., and Huangetal, Y., Changes in serum contents of interleukin-6 and interleukin-10 and their relation with occurrence of sepsis and prognosis of severely burned patients, Zhonghua Shao Shang Za Zhi, 2012, vol. 28, no. 2, pp. 111–115. https://doi.org/10.3760/cma.j.issn.1009-2587.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  16. Belardelli, F., Role of interferons and other cytokines in the regulation of the immune response, APMIS, 1995, vol. 103, no. 3, pp. 161–179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x

    Article  CAS  PubMed  Google Scholar 

  17. Newton, R., Kuitert, M., Bergmann, M., Adcock, I., and Barnes, P., Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1β, Biochem. Biophys. Res. Commum., 1997, vol. 237, pp. 28–32. https://doi.org/10.1006/bbrc.1997.7064

    Article  CAS  Google Scholar 

  18. Salih, E., Afaf, K., Mohamed, AnwarK., and Basic, Clin., Pharmacol. Toxicol, 2017, vol. 120, no. 6, pp. 515–22.

    Google Scholar 

  19. Kunwar, A., Adhikary, B., Jayakumar, S., and Barik, A., Melanin, a promising radioprotector: mechanisms of actions in a mice model, Toxicol. Appl. Pharmacol., 2012, vol. 264, pp. 202–211. https://doi.org/10.1016/j.taap.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  20. Brenner, M. and Hearling, V.G., The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 2008, vol. 84, no. 3, pp. 539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng-Yu, Y. and Jian-Hua, Q., Comparison of antioxidant activities of melanin fractions from chestnut shell, Molecules, 2016, vol. 21, p. 487. https://doi.org/10.3390/molecules21040487

    Article  CAS  Google Scholar 

  22. Keypour, S., Riahi, H., Moradali, M., and Rafati, H., Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) (Aphyllophoromycetideae), from Iran, Int. J. Med. Mushrooms, 2008, vol. 10, no. 4, pp. 345–349. https://doi.org/10.1615/IntJMedMushr.v10.i4.70

    Article  Google Scholar 

  23. Racca, S., Spaccamiglio, A., Esculapio, P., Abbadessa, G., Cangemi, L., DiCarlo, F., and Portaleone, P., Effects of swim stress and alpha-MSH acute pre-treatment on brain 5-HT transporter and corticosterone receptor, Pharmacol. Biochem. Behav., 2005, vol. 81, no. 4, pp. 894–900. https://doi.org/10.1016/j.pbb.2005.06.014

    Article  CAS  PubMed  Google Scholar 

  24. Chornenka, N.M., Raetska YA.B., Savchuk O.M., Kompanets I.V., Beregova, T.V., and Ostapchenko, L.I., Effect of different doses of melanin in the blood protein changes in rats under alkaline esophageal burns, Res. J. Pharmaceut., Biol. Chem. Sci., 2017, vol. 8, no. 1, p. 261.

    CAS  Google Scholar 

  25. Seniuk, O., Gorovoj, L., and Kovalev, V., Anticancerogenic propertis of melaninglucan complex from higher fungi, in Proc. 5th Int. Med. Mushroom Con. Nantong, 2009, pp. 142–149. https://doi.org/10.1615/IntJMedMushr. v13.i1.20

  26. Carletti, G., Nervo, G., and Cattivelli, L., Flavonoids and melanins: a common strategy across two kingdoms, Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1159–1170. https://doi.org/10.7150/ijbs.9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raetska, Ya.B., Ishchuk, T.V., Savchuk, O.M., and Ostapchenko, L.I., Experimental modeling of first-degree chemically-induced esophageal burns in rats, Med. Chem., 2013, vol. 15, no. 4, pp. 30–34.

    Google Scholar 

  28. Chyzhanska, N.V., Tsyryuk, O.I., and Beregova, T.V., The level of cortisol in the blood of rats before and after stress action against the background of melanin, Visn. Probl. Biol. Med., 2007, vol. 1, pp. 40–44.

    Google Scholar 

  29. Fistal, E.Y., Kozinets, G.P., and Samoilenko, G.E., Combustiology, Kharkov, 2004.

  30. Crowther, J.R., The ELISA Guidebook, Crowther: Humana Press Inc., 2001. https://doi.org/10.1007/978-1-60327-254-4

    Book  Google Scholar 

  31. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159.

    Article  CAS  Google Scholar 

  32. Livak, E.J. and Schmittgen, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔCT method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  33. Mehmet, A.O. and Tung, T.N., Comparison of the cytokine and chemokine dynamics of the early inflammatory response in models of burn injury and infection, Cytokine, 2011, vol. 55, no. 3, pp. 362–371.https://doi.org/10.1016/j.cyto.2011.05.010

    Article  CAS  Google Scholar 

  34. Wigenstama, E., Elfsmarka, L., Buchtab, A., and Jonasson, S., Inhaled sulfur dioxide causes pulmonary and systemic inflammation leading to fibrotic respiratory disease in a rat model of chemical-induced lung injury, Toxicology, 2016, vols. 368–369, pp. 28–36. https://doi.org/10.1016/j.tox.2016.08.018

    Article  CAS  Google Scholar 

  35. Cade, F.I., Paschalis, E.I., Regatieri, C.V., Vavvas, D.G., and Dana, R., Alkali burn to the eye: protection using TNF-α inhibition, Cornea, 2014, vol. 33, no. 4, pp. 382–389. https://doi.org/10.1097/ICO.0000000000000071

    Article  PubMed  Google Scholar 

  36. Liu, Y., Cai, S., Shu, X.Z., Shelby, J., and Prestwich, G.D., Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing., Wound Repair Regen., 2007, vol. 5, no. 2, pp. 245–251. https://doi.org/10.1111/j.1524-475X.2007.00211.x

    Article  Google Scholar 

  37. Rousseau, A.F., Damas, P., and Ledoux, D., Effect of cholecalciferol recommended daily allowances on vitamin D status and fibroblast growth factor-23: an observational study in acute burn patients, Burns, 2014, vol. 40, no. 5, pp. 865–870. https://doi.org/10.1016/j.burns.2013.11.015

    Article  PubMed  Google Scholar 

Download references

Funding

This study did not receive any specific grants from financial institutions in the public, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chornenka.

Ethics declarations

Conflict of interests. The authors state that they have no conflict of interests.

Statement on the welfare of animals. In this work, we adhered to the general ethical principles of experiments on animals adopted by the First National Congress of Bioethics in Ukraine (September 2001) and with the observance of the international principles of the European Convention for the Protection of Vertebrate Animals used for research and other scientific purposes, other international agreements, and the national legislation in this area.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chornenka, N.M., Raetska, Y.B., Dranitsina, A.S. et al. Expression Levels of Genes Ptgs2 and Tgfb1 in Esophageal Burns and When Introducing Melanin. Cytol. Genet. 53, 367–374 (2019). https://doi.org/10.3103/S0095452719050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719050050

Keywords:

Navigation