Skip to main content
Log in

Site-Directed Mutagenesis of Tryptophan Residues in the Structure of the Catalytic Module of Tyrosyl-tRNA Synthetase from Bos taurus

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Site-directed mutagenesis of the N-terminal catalytic module of Bos taurus tyrosyl-tRNA synthetase (mini-BtTyrRS) with the substitution of three Trp residues by Ala residues in its structure using the modified QuikChange method was performed to study structural dynamic and functional properties of the protein by fluorescence spectroscopy. Point substitutions of tryptophan codons TGG with alanine codons GCG in the cDNA nucleotide sequence of the tyrosyl-tRNA synthetase catalytic module cloned in expression plasmid pET-30a were obtained during sequential PCR reactions using the developed primers. As a result, mini-BtTyrRS cDNAs, whose sequences contain only one tryptophan codon in each of the three positions in the protein structure, were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Pang, Y.L.J., Poruri, K., and Martinis, S.A., tRNA synthetase: tRNA aminoacylation and beyond, WIREs RNA, 2014, vol. 5, no. 4, pp. 461–480. https://doi.org/10.1002/wrna.1224

    Article  CAS  PubMed  Google Scholar 

  2. Kornelyuk, A.I., Structural and functional investigation of mammalian tyrosyl-tRNA synthetase, Biopolym. Cell, 1998, vol. 14, no. 4, pp. 349–359.https://doi.org/10.7124/bc.0004DF

    Article  CAS  Google Scholar 

  3. Gnatenko, D.V., Kornelyuk, A.I., Kurochkin, I.V., Ribkinska, T.A., and Matsuka, G.Kh., Isolation and characteristics of functionally active proteolytically modified form of tyrosyl-tRNA synthetase from the bovine liver, Ukr. Biochim. J., 1991, vol. 63, no. 4, pp. 61–67.

    CAS  Google Scholar 

  4. Greenberg, Y., King, M., Kiosses, W.B., Ewalt, K., Yang, X., Schimmel, P., Reader, J.S., and Tzima, E., The novel fragment of tyrosyl-tRNA synthetase, mini-TyrRS, is secreted to induce an angiogenic response in endothelial cells, FASEB J., 2008, vol. 22, no. 5, pp. 1597–1605. https://doi.org/10.1096/fj.07-9973com

    Article  CAS  PubMed  Google Scholar 

  5. Kornelyuk, A.I., Maarten, P.R., Dubrovsky, A.L., and Murray, J.C., Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase, Biopolym. Cell, 1999, vol. 15, no. 2, pp. 168–172.https://doi.org/10.7124/bc.000516

    Article  CAS  Google Scholar 

  6. Guo, M. and Schimmel, P., Essential non-translational functions of tRNA synthetases, Nat. Chem. Biol., 2013, vol. 9, pp. 145–153. https://doi.org/10.1038/nchembio.1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ladokhin, A.S., Fluorescence spectroscopy in peptide and protein analysis, in Meyers, R.A., Ed., Chichester: John Wiley and Sons Ltd., 2002, pp. 5762–5779.

  8. Chatttopadhyay, A. and Haldar, S., Dynamic insight into protein structure utilizing red edge excitation shift, Acc. Chem. Res., 2013, vol. 47, no. 1, pp. 12–19. https://doi.org/10.1021/ar400006z

    Article  CAS  Google Scholar 

  9. Rochamare, S.B. and Gaikwad, M., Tryptophan environment and functional characterization of a kinetically stable serine protease containing a polyproline II fold, J. Fluoresc., 2014, vol. 24, pp. 1363–1370. https://doi.org/10.1007/s10895-014-1445-5

    Article  CAS  Google Scholar 

  10. Kordysh, M. and Kornelyuk, A., Conformational flexibility of cytokine-like C-module of tyrosyl-tRNA synthetase monitored by Trp144 intrinsic fluorescence, J. Fluoresc., 2006, vol. 16, pp. 705–711. https://doi.org/10.1007/s10895-006-0113-9

    Article  CAS  PubMed  Google Scholar 

  11. Turoverov, K.K. and Kuznetsova, I.M., The intrinsic fluorescence of globular actin: peculiarities in the location of tryptophan residues, Bioorg. Chem., 1998, vol. 24, no. 12, pp. 893–898.

    CAS  Google Scholar 

  12. Vallee-Belisle, A. and Michnick, S.W., Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis, Nat. Struct. Mol. Biol., 2012, vol. 19, no. 7, pp. 731–737. https://doi.org/10.1038/nsmb.2322

    Article  CAS  PubMed  Google Scholar 

  13. Kordysh, M.A. and Kornelyuk, A.I., Monitoring of the conformational change in the environment of the Trp144 fluorophore in the C-module of tyrosyltRNA synthetase during thermal denaturation, Dop. Nac. Acad. Nauk Ukraine, 2004, no. 1, pp. 156–161.

  14. Kordysh, M.A. and Kornelyuk, A.I., Investigation of the interaction between isolated C-module of tyrosyl-tRNA synthetase and tRNA by fluorescence spectroscopy, Biopolym. Cell, 2006, vol. 22, no. 4, pp. 283–298.https://doi.org/10.7124/bc.00073B

    Article  Google Scholar 

  15. Klimenko, I.V., Gushcha, T.O., and Kornelyuk, A.I., Properties of tryptophan fluorescence of two forms of tyrosyl-tRNA synthetase from the liver, Biopolym. Cell, 1991, vol. 7, no. 6, pp. 83–88.https://doi.org/10.7124/bc.000303

    Article  CAS  Google Scholar 

  16. Kornelyuk, A.I., Klimenko, I.V., and Odynets, K.A., Conformational change of mammalian tyrosyl-tRNA synthetase induced by tyrosyladenylate formation, Biochem. Mol. Biol. Int., 1995, vol. 35, no. 2, pp. 317–322.

    CAS  PubMed  Google Scholar 

  17. Kordysh M.O., Kyryushko G.V., Mely, Y., and Kornelyuk O.I. Conformational mobility investigation of TyrRS N-module and its complex with tRNA using the methods of time-resolved fluorescence spectroscopy, Biopolym. Cell, 2007, vol. 23, no. 2, pp. 130–136.https://doi.org/10.7124/bc.00075F

  18. Ling, M.M. and Robinson, B.H., Approaches to DNA mutagenesis: an overview, Anal. Biochem., 1997, vol. 254, pp. 157–178. https://doi.org/10.1006/abio.1997.2428

    Article  CAS  PubMed  Google Scholar 

  19. Inoue, H., Nojima, H., and Okayama, H., High efficiency transformation of Escherichia coli plasmids, Gene, 1990, vol. 96, pp. 23–28.https://doi.org/10.1016/0378-1119(90)90336-P

    Article  CAS  PubMed  Google Scholar 

  20. Miller, E.M. and Nickoloff, J.A., Escherichia coli electrotransformation, Methods Mol. Biol., 1995, vol. 47, pp. 105–113. https://doi.org/10.1385/0-89603-310-4:105

    Article  CAS  PubMed  Google Scholar 

  21. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  22. Morrison, K.L. and Weiss, G.A., Combinatorial alanine scanning, Curr. Opin. Chem. Biol., 2001, vol. 5, pp. 302–307. https://doi.org/10.1016/S1367-5931(00)00206-4

    Article  CAS  PubMed  Google Scholar 

  23. Liu, H. and Naismith, J.H., An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol, BMC Biotechnol., 2008, vol. 8, no. 1. https://doi.org/10.1186/1472-6750-8-91

  24. Vovis, G.F. and Lacks, S., Complementary action of restriction enzymes endo R-DpnI and endo R-DpnII on bacteriophage fI DNA, J. Mol. Biol., 1977, vol. 115, no. 3, pp. 525–538. doi.org/ (77)90169-3https://doi.org/10.1016/0022-2836

  25. Edelheit, O., Hanukoglu, A., and Hanukoglu, I., Simple and efficient site-directed mutagenesis using two single-primer reaction in parallel to generate mutants for protein structure-function studies, BMC Biotechnol., 2009, vol. 9, no. 1. https://doi.org/10.1186/1472-6750-9-61

  26. Qui, D. and Scholthof, R.-B.G., A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis, J. Virol. Methods, 2008, vol. 149, no. 1, pp. 85–90.

    Article  CAS  Google Scholar 

  27. Salerno, J.C., Jones, R.J., and Erdogan, E., A single-stage polymerase-based protocol for the introduction of deletions and insertion without subcloning, Mol. Biotechnol., 2005, vol. 29, no. 3, pp. 225–232.

    Article  CAS  PubMed  Google Scholar 

  28. Tregan, A., Kielbus, M., Czapinski, J., Stepulak, A., Huhtaniemi, I., and Rivero-Muller, A., REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering, Sci. Rep., 2016, vol. 6. https://doi.org/10.1038/srep19121

  29. Tseng, W.-Chi., Lin, J.-W., Wei, T.-Yu., and Fang, T.-Yu., A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method, Anal. Biochem., 2008, vol. 375, no. 2, pp. 376–378.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, L., Bauman, U., and Reymnd, J.-L., An efficient one-step site-directed and site-saturation mutagenesis protocol, Nucleic Acids Res., 2004, vol. 32, no. 14. e115.https://doi.org/10.1093/nar/gnh110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blocquel, D., Li Sh, Wei N., Daub H., Sajish M., Erfurth M.-L., Kooi G., Zhou J., Bai G., Schimmel P., Jordanova A., and Yang X.-L. Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy, Nucleic Acids Res., 2017, vol. 45, no. 13, pp. 8091–8104. https://doi.org/10.1093/nar/gkx455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Zayets.

Additional information

Translated by D. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayets, V.N., Tsuvarev, A.Y., Kolomiiets, L.A. et al. Site-Directed Mutagenesis of Tryptophan Residues in the Structure of the Catalytic Module of Tyrosyl-tRNA Synthetase from Bos taurus. Cytol. Genet. 53, 219–226 (2019). https://doi.org/10.3103/S009545271903006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271903006X

Keywords:

Navigation