Skip to main content
Log in

Effects of Exogenous Cytokinins on Spore Germination and Gametophyte Morphogenesis of Dryopteris filix-mas (L.) Schott in vitro Culture

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The impact of exogenous cytokinins (kinetin, zeatin, 6-benzylaminopurine, and N6-2-isopentenyladenine) on the pattern of Dryopteris filix-mas (L.) Schott spore germination, gametophyte growth and morphology in vitro have been studied. It was found that all studied cytokinins significantly retarded spore germination, inhibited gametophyte growth, caused deformations and decrease in the thallus size, and suppressed the development of reproductive structures and sporophyte growth at the concentration of 10–5 М. The reduction of the hormone concentration to 10–8 М stimulated the gametophyte development, induced cell divisions, particularly in the apical zone, due to which some of thalli were deformed, promoted the production of rhizoids, affected the formation of antheridia and archegonia, and slowed the sporophyte development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kosakivska, I.V., Babenko, L.M., Shcherbatiuk, M.M., Vedenicheva, N.P., Voytenko, L.V., and Vasyuk, V.A., Phytohormones during growth and development of Polypodiophyta, Adv. Biol. Eearth Sci., 2016, vol. 1, pp. 26–44.

    Google Scholar 

  2. Plant Hormones: Biosynthesis, Signal Transduction, Action, Davies, P.J., Ed., Netherlands: Springer, 2010. 3rd ed. https://doi.org/10.1007/978-1-4020-2686-7

    Google Scholar 

  3. Fonseca, S., Rosado, A., Vaughan-Hirsch, J., Bishopp, A., and Chini, A., Molecular locks and keys: the role of small molecules in phytohormone research, Front. Plant Sci., 2014, vol. 5, art. 709, pp. 1–16.https://doi.org/10.3389/fpls.2014.00709

  4. Wang, Y.H. and Irving, H.R., Developing a model of plant hormone interactions, Plant Signal. Behav., 2011, vol. 6, pp. 494–500. https://doi.org/10.4161/psb.6.4.14558

    Book  Google Scholar 

  5. Wells, D.M., Laplaze, L., Bennett, M.J., and Vernoux, T., Biosensors for phytohormone quantification: challenges, solutions, and opportunities, Trends Plant Sci., 2013, vol. 18, pp. 244–249. https://doi.org/10.1016/j.tplants.2012.12.005

    Google Scholar 

  6. Borghi, L., Kang, J., Ko, D., Lee, Y., and Martinoia, E., The role of ABCG-type ABC transporters in phytohormone transport, Biochem. Soc. Trans., 2015, vol. 43, pp. 924–930. https://doi.org/10.1042/BST20150106

    Google Scholar 

  7. Raghavan, V., Developmental Biology of Fern Gametophytes, Cambridge University Press, 1989. https://doi.org/10.1017/CBO9780511529757

  8. Du, H., Li, Y., Li, D., Dai, S., Jiang, C., and Shi, L., Effects of light, temperature and pH on spore germination and early gametophytic development of Alsophila metteniana, Biodiv. Sci., 2009, vol. 17, pp. 182–187. https://doi.org/10.3724/SP.J.1003.2009.08262

    Google Scholar 

  9. Juárez-Orozco, S., Orozco-Segovia, A., Mendoza-Ruiz, A., and Pérez-García, B., Spore germination of eight homosporous ferns in a temperature gradient, S. Afr. J. Bot., 2013, vol. 87, pp. 112–117.https://doi.org/10.1016/j.sajb.2013.04.005

    Article  Google Scholar 

  10. Edwards, E.S. and Roux, S.J., Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores, Planta, 1998, vol. 205, pp. 553–560. https://doi.org/10.1007/s004250050355

    Book  Google Scholar 

  11. Wu, H., Liu, X.-Q., Ji, H., and Chen, L.-Q., Effects of light, macronutrients, and sucrose on germination and development of the endangered fern Adiantum reniforme var. sinense (Adiantaceae), Sci. Hortic., 2010, vol. 125, pp. 417–421. https://doi.org/10.1016/j.scienta.2010.03.004

    Book  Google Scholar 

  12. Suo, J., Chen, S., Zhao, Q., Shi, L., and Dai, S., Fern spore germination in response to environmental factors, Front. Biol., 2015, vol. 10, pp. 358–376.https://doi.org/10.1007/s11515-015-1342-6

    Article  CAS  Google Scholar 

  13. Edwards, M.E., Carbon dioxide and ethylene control of spore germination in Onoclea sensibilis L., Plant Physiol., 1977, vol. 59, pp. 756–758. https://doi.org/10.1104/pp.59.4.756

    Book  Google Scholar 

  14. Camloh, M., Ravnikar, M., and Zel, J., Jasmonic acid promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes, Physiol. Plant, 1996, vol. 97, pp. 659–664. https://doi.org/10.1111/j.1399-3054.1996.tb00529.x

    Google Scholar 

  15. Chia, S.-G.E. and Raghavan, V., Abscisic acid effects on spore germination and protonemal growth in the fern, Mohria caffrorum, New Phytol, 1982, vol. 92, pp. 31–37.

    Article  CAS  Google Scholar 

  16. Babenko, L.M., Romanenko, K.O., Shcherbatiuk, M.M., Vasheka, O.V., Romanenko, P.O., Negretsky, V.A., and Kosakivska, I.V., Effects of exogenous phytohormones on spore germination and morphogenesis of Polystichum aculeatum (L.) Roth gametophyte in vitro culture, Cytol. Genet., 2018, vol. 52, pp. 117–126.https://doi.org/10.3103/S0095452718020032

    Article  Google Scholar 

  17. Gómez-Garay, A., Galán, J.M.G., Cabezuelo, A., Pintos, B., Prada, C., and Martín, L., Ecological significance of brassinosteroids in three temperate ferns, in Current Advances in Fern Research, Cham: Springer, 2018, pp. 453–466. https://doi.org/10.1007/978-3-319-75103-0_21

    Google Scholar 

  18. Takeno, K. and Furuya, M., Inhibitory effect of gibberellins on archegonial differentiation in Lygodium japonicum, Physiol. Plant., 1977, vol. 39, pp. 135–138. https://doi.org/10.1111/j.1399-3054.1977.tb04024.x

    Google Scholar 

  19. Swami, P. and Raghavan, V., Control of morphogenesis in the gametophyte of a fern by light and growth hormones, Can. J. Bot., 1980, vol. 58, pp. 1464–1473. https://doi.org/10.1139/b80-179

    Book  Google Scholar 

  20. Kazmierczak, A., Induction of cell division and cell expansion at the beginning of gibberellin A3-induced precocious antheridia formation in Anemia phyllitidis gametophytes, Plant Sci., 2003, vol. 165, pp. 933–939.https://doi.org/10.1016/S0168-9452(03)00217-6

    Article  CAS  Google Scholar 

  21. Castilho, C.V.V., Neto, J.F.F., Leitao, S.G., Bar-reto, S.C.P., and Silva, N.C.B., Anemia tomentosa var. anthriscifolia in vitro culture: sporophyte development and volatile compound profile of an aromatic fern, Plant Cell Tiss. Organ Cult., 2018, pp. 1–13. https://doi.org/10.1007/s11240-018-1383-z

    Google Scholar 

  22. Miller, J.H., Fern gametophytes as experimental material, Bot. Rev., 1968, vol. 34, pp. 361–440. https://doi.org/10.1007/BF02859133

    Book  Google Scholar 

  23. Korpelainen, H., Growth, sex determination and reproduction of Dryopteris filix-mas (L.) Schott gametophytes under varying nutritional conditions, Bot. J. Linn. Soc., 1994, vol. 114, pp. 357–366. https://doi.org/10.1006/bojl.1994.1022

    Book  Google Scholar 

  24. Atallah, N.M. and Banks, J.A., Reproduction and the pheromonal regulation of sex type in fern gametophytes, Front. Plant Sci., 2015, vol. 6, art. 100, pp. 1–6.https://doi.org/10.3389/fpls.2015.00100

  25. Hollingsworth, S., Andres, E., and Greery, G., Pheromonal interactions among gametophytes of Osmundastrum cinnamomeum and the origins of antheridiogen systems in leptosporangiate ferns, Int. J. Plant Sci., 2012, vol. 173, pp. 382–390. https://doi.org/10.1086/664717

    Book  Google Scholar 

  26. Menéndez, V., Revilla, M.A., Bernard, P., Gotor, V., and Fernández, H., Gibberellins and antheridiogen on sex in Blechnum spicant L., Plant Cell Rep., 2006, vol. 25, pp. 1104–1110. https://doi.org/10.1007/s00299-006-0149-y

    Book  Google Scholar 

  27. Kwa, S.H., Wee, Y.C., Lim, T.M., and Kumar, P.P., IAA-induced apogamy in Platycerium coronarium (Koenig) Desv. gametophytes cultured in vitro, Plant Cell Rep., 1995, vol. 14, pp. 598–602. https://doi.org/10.1007/BF00231946

    Book  Google Scholar 

  28. Higuchi, H., Amaki, W., and Suzuki, S., In vitro propagation of Nephrolepis cordifolia Prsel., Sci. Hortic., 1987, vol. 32, pp. 105–113. https://doi.org/10.1016/0304-4238(87)90021-5

    Book  Google Scholar 

  29. Fernández, H. and Revilla, M.A., In vitro culture of ornamental ferns, Plant Cell Tissue Organ Cult., 2003, vol. 73, pp. 1–13. https://doi.org/10.1023/A:1022650701341

    Google Scholar 

  30. Bharati, S.K., Manabendra, D.C., and Mazumder, P.B., In vitro propagation in Pteridophytes, Int. J. Res. Ayurveda Pharm., 2013, vol. 4, pp. 297–303. https://doi.org/10.7897/2277-4343.04245

    Google Scholar 

  31. Somer, M., Arbesū, R., Menéndez, V., Revilla, M.A., and Fernández, H., Sporophyte induction studies in ferns in vitro, Euphytica, 2010, vol. 171, p. 203. https://doi.org/10.1007/s10681-009-0018-1

  32. Chen, S.Y. and Read, P.E., Micropropagation of leatherleaf fern (Rumohra adiantiformis), Proc. Fla. State Hort. Soc., 1983, vol. 96, pp. 266–269.

    Google Scholar 

  33. Menéndez, V., Abul, Y., Bohanec, B., Lafont, F., and Fernández, H., The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus L., Acta Physiol. Plant, 2011, vol. 33, pp. 2493–500. https://doi.org/10.1007/s11738-011-0794-9

    Book  Google Scholar 

  34. Higuchi, H. and Amaki, W., Effects of 6-benzylaminopurine on the organogenesis of Asplenium nidus L. through in vitro propagation, Sci. Hortic., 1989, vol. 37, pp. 351–359. https://doi.org/10.1016/0304-4238(89)90146-5

    Article  CAS  Google Scholar 

  35. Vedenicheva, N.P. and Kosakivska, I.V., Modern aspects of cytokinins studies: evolution and crosstalk with other phytohormones, Fiziol. Rast. Genet., 2016, vol. 48, pp. 3–19.

    Article  Google Scholar 

  36. Vedenicheva, N.P. and Kosakivska, I.V., Cytokinins As Regulators of Plant Ontogenesis Under Different Growth Conditions, Kyiv: Nash Format, 2017.

    Google Scholar 

  37. Veselov, D.S., Kudoyarova, G.R., Kudryakova, N.V., and Kusnetsov, V.V., Role of cytokinins in stress resistance of plants, Russ. J. Plant Physiol., 2017, vol. 64, pp. 15–27. https://doi.org/10.1134/S1021443717010162

    Book  Google Scholar 

  38. Kudo, T., Makita, No., Kojima, M., Tokunaga, H., and Sakakibara, H., Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-o-glucosyltransferase in rice, Plant Physiol., 2012, vol. 160, pp. 319–331. https://doi.org/10.1104/pp.112.196733

    Book  Google Scholar 

  39. Huang, S., Cerny, R.E., Qi, Y., Bhat, D., Aydt, C.M., Hanson, D.D., Malloy, K.P., and Ness, L.A., Transgenic studies on the involvement of cytokinin and gibberellin in male development, Plant Physiol., 2003, vol. 131, pp. 1270–1282. https://doi.org/10.1104/pp.102.018598

    Book  Google Scholar 

  40. Gerashchenkov, G.A. and Rozhnova, N.A., The involvement of phytohormones in the plant sex regulation, Russ. J. Plant Physiol., 2013, vol. 60, pp. 597–610. https://doi.org/10.1134/S1021443713050063

    Book  Google Scholar 

  41. Beck, M.J. and Caponetti, J.D., The effects of kinetin and naphthaleneacetic acid on in vitro shoot multiplication and rooting in the fishtail fern, Am. J. Bot, 1983, vol. 70, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hicks, G. and Aderkas, P.V., A tissue culture of the Ostrich fern Matteuccia struthiopteris (L.) Todaro, Plant Cell Tiss. Organ Cult, 1986, vol. 5, pp. 199–204. https://doi.org/10.1007/BF00040130

    Book  Google Scholar 

  43. Amaki, W. and Higuchi, H., A possible propagation system of Nephrolepis, Asplenium, Pteris, Adiantum and Rumora through tissue culture, Acta Hortic., 1991, vol. 300, pp. 237–243. https://doi.org/10.17660/ActaHortic.1992.300.33

    Google Scholar 

  44. Fernández, H., Bertrand, A.M., and Sánchez-Tamés, R., Micropropagation and phase change in Blechnum spicant and Pteris ensiformis, Plant Cell Tiss. Organ Cult., 1996, vol. 44, pp. 261–265. https://doi.org/10.1007/BF00048534

    Google Scholar 

  45. Fernández, H., Bertrand, A., and Sánchez-Tamés, R., Plantlet regeneration in Asplenium nidus L. and Pteris ensiformis L. by homogenization of BA treated rhizomes, Sci. Hortic., 1997, vol. 68, pp. 243–247. https://doi.org/10.1016/S0304-4238(96)00986-7

    Book  Google Scholar 

  46. Menéndez, V., Revilla, M.A., Fal, M.A., and Fernández, H., The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L., Plant Cell Tiss. Organ Cult., 2009, vol. 96, pp. 245–250. https://doi.org/10.1007/s11240-008-9481-y

    Book  Google Scholar 

  47. Greer, G.K., Dietrich, M.A., DeVol, J.A., and Rebert, A., The effects of exogenous cytokinin on the morphology and gender expression of Osmunda regalisgametophytes, Am. Fern J., 2012, vol. 102, pp. 32–46. https://doi.org/10.1640/0002-8444-102.1.32

    Google Scholar 

  48. Bonomo, M.C., Martinez, O.G., Tanco, M.E., Cardozo, R., and Aviles, Z., Spores germination and gametophytes of Alsophila odonelliana (Cyatheaceae) in different sterile media, Phyton (Buenos Aires), 2013, vol. 82, pp. 119–126.

    Google Scholar 

  49. Spiro, M.D., Torabi, B., and Cornell, C.N., Cytokinins induce photomorphogenic development in dark-grown gametophytes of Ceratopteris richardii, Plant Cell Physiol., 2004, vol. 45, pp. 1252–1260. https://doi.org/10.1093/pcp/pch146

    Book  Google Scholar 

  50. Banks, J.A., Gametophyte development in ferns, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 163–186. https://doi.org/10.1146/annurev.arplant.50.1.163

    Book  Google Scholar 

  51. Parajuli, J. and Joshi, S.D., In vitro study of effects of growth hormones on sporophyte development of Cyathea spinulosa, Int. J. Biodivers. Conserv., 2014, vol. 6, pp. 247–255. https://doi.org/10.5897/IJBC2014.0684

    Google Scholar 

  52. Grichuk, V.P. and Monoszon, M.H., The Determinant of Single-Beam Spores of the Ferns from the Family Polypodiaceae R. Br., Growing on the Territory of the USSR, Moscow: Nauka, 1971.

    Google Scholar 

  53. Nayar, B.K. and Kaur, S., Gametophytes of homosporous ferns, Bot. Rev., 1971, vol. 37, pp. 295–396. https://doi.org/10.1007/BF02859157

    Book  Google Scholar 

  54. Tryon, A.F. and Lugardon, B., Dryopteridaceae Herter, in spores of the pteridophyta, springer, New York, 1991. https://doi.org/10.1007/978-1-4613-8991-0_25

  55. Gaba, V., Plant growth regulators in plant tissue culture and development, in Plant Tissue Culture, Development, and Biotechnology, Trigiano, R.N. and Gray, D.J., Eds., CRC Press, 2005, pp. 87–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. O. Romanenko, I. V. Kosakivska, L. M. Babenko, O. V. Vasheka, P. O. Romanenko, V. A. Negretsky or V. M. Minarchenko.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanenko, K.O., Kosakivska, I.V., Babenko, L.M. et al. Effects of Exogenous Cytokinins on Spore Germination and Gametophyte Morphogenesis of Dryopteris filix-mas (L.) Schott in vitro Culture. Cytol. Genet. 53, 192–201 (2019). https://doi.org/10.3103/S0095452719030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719030034

Keywords:

Navigation