Peculiarities of Regeneration and Genetic Variability of Crambe koktebelica and Crambe tataria Plants in vitro

Abstract

The regenerative capability of three types of explants was studied on media with different compositions of growth regulators with the purpose of selecting optimal conditions of fast reproduction of endangered Crambe species that could be used as a relevant source of genetic material for the improvement of industrially valuable plants. PCR-analysis of genotypes of C. koktebelica and C. tataria plants was conducted to identify the influence of in vitro cultivation on the genetic stability of plants. The highest regeneration rates were observed with the use of petiole explants on MS medium with BA and NAA. The absence of somaclonal variability in C. koktebelica and C. tataria in vitro regenerated plants was demonstrated.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lazzeri, L., De Mattei, F., Bucelli, F., and Palmieri, S., Crambe oil—a potential new hydraulic oil and quenchant, Ind. Lubr. Tribol., 1997, vol. 49, no. 2, pp. 71–77.

    Article  Google Scholar 

  2. 2.

    Branca, F. and Cartea, E., Brassica, in Wild Crop Relatives: Genomic and Breeding Resources, vol. V: Oilseeds, Kole, C., Ed., Heidelberg: Springer-Verlag, 2011, pp. 17–36.

    Google Scholar 

  3. 3.

    Goncalves, A.C.Jr., Rubio, F., Meneghel, A.P., Coelho, G.F., Dragunski, D.C., and Strey, L., The use of Crambe abyssinica seeds as adsorbent in the removal of metals from waters, Rev. Bras. Eng. Agric. Ambient, 2013, vol. 17, no. 3, pp. 306–311.

    Article  Google Scholar 

  4. 4.

    Didukh, Ya.P., Crambe koktebelika, in Red Data Book of Ukraine, Plant Kingdom, Kyiv: Globalconsulting, 2009, p. 360.

    Google Scholar 

  5. 5.

    https://doi.org/www.iucnredlist.org.

  6. 6.

    Bowes, B.G., In vitro morphogenesis of Crambe maritime L., Protoplasma, 1976, vol. 89, no. 1, pp. 185–188.

    Article  Google Scholar 

  7. 7.

    Piovan, A., Cassina, G., and Filippini, R., Crambe tataria: actions for ex situ conservation, Biodivers. Conserv., 2011, vol. 20, no. 2, pp. 359–371.

    Article  Google Scholar 

  8. 8.

    Twardovska, M.O., Drobyk, N.M., Melnyk, V.M., Konvalyuk, I.I., and Kunakh, V.A., Genome variability of some Gentiana L. species in nature and in culture in vitro: RAPD-analysis, Biopolym. Cell, 2010, vol. 26, no. 6, pp. 499–507.

    Article  Google Scholar 

  9. 9.

    Nehra, N.S., Kartha, K.K., Stushnott, C., and Giles, K.L., The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry, Plant Cell Tissue Organ Cult., 1992, vol. 29, no. 3, pp. 257–268.

    Article  CAS  Google Scholar 

  10. 10.

    Kumar, P.S. and Mathur, V.L., Chromosomal instability in callus culture of Pisum sativum, Plant Cell Tissue Organ Cult., 2004, vol. 78, pp. 267–271.

    Article  Google Scholar 

  11. 11.

    Mosula, M.Z. and Konvalyuk, I.I., Mel’nyk, V.M., Drobyk, N.M., Tsaryk, Y.V., Nesteruk, Yu.Y., and Kunakh, V.A., Genetic polymorphism of Gentiana lutea L. (Gentianaceae) populations from the Chornohora Ridge of the Ukrainian Carpathians, Cytol. Genet., 2014, vol. 48, no. 6, pp. 371–377.

    Article  Google Scholar 

  12. 12.

    Bublyk, O.M., Andreyev, I.O., Spiridonova, K.V., and Kunakh, V.A., The variability of morphogenic and nonmorphogenic tissue culture of Ungernia victoris by the results of RAPD analysis, Visn. Ukr. Tov. Genet. Sel., 2008, vol. 6, no. 1, pp. 44–51.

    Google Scholar 

  13. 13.

    Belokurova, V.B., Lystvan, K.V., Maystrov, P.D., Sikura, Y.Y., Gleba, Yu.Yu., and Kuchuk, N.V., Using methods of plant biotechnology for conservation and study of the world flora biodiversity, Cytol. Genet., 2005, vol. 39, no. 1, pp. 41–51.

    CAS  Google Scholar 

  14. 14.

    Pushkarova, N.O., Belokurova, V.B., and Kuchuk, M.V., Seed surface sterilization efficiency as an important prerequisite in formation of endangered plant species in vitro collections, in Factors in Experimental Evolution of Organisms, 2015, vol. 17, pp. 241–244.

    Google Scholar 

  15. 15.

    Lowe, A.J., Jones, A.E., Raybould, A.F., Trick, M., Moule, C.L., and Edwards, K.J., Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle, Mol. Ecol. Res., 2002, vol. 2, no. 1, pp. 7–11.

    CAS  Google Scholar 

  16. 16.

    Werner, E.T., Soares, T.C., Gontijo, A.B., Souza, Neto J.D., and Amaral, J.A., Genetic stability of micropropagated plants of Crambe abyssinica Hochst using ISSR markers, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 16450–16460.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Khalil, R.M.A., Soliman, Kh.A., Rashed, N.A.K.F., and Ibrahim, S.A., Genetic polymorphism of some medicinal plants belonging to Brassicaceae using molecular markers, Egypt. J. Genet. Cytol., 2010, vol. 39, no. 1, pp. 41–55.

    Google Scholar 

  18. 18.

    Singhal, H., Ren, Y.R., and Kern, S.E., Improved DNA electrophoresis in conditions favoring polyborates and Lewis acid complexation, PLoS One, 2010, vol. 5, no. 6. e11318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Brody, J.R. and Kern, S.E., History and principles of conductive media for standard DNA electrophoresis, Anal. Biochem., 2004, vol. 333, no. 1, pp. 1–13.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, New York: CSHL Press, 2001.

    Google Scholar 

  21. 21.

    Perrier, X., Flori, A., and Bonnot, F., Data analysis methods, in Genetic Diversity of Cultivated Tropical Plants, Hamon, P., Seguin, M., Perrier, X., and Glaszmann, J.C., Eds., Enfield: Sci. Publ., 2003, pp. 43–76.

    Google Scholar 

  22. 22.

    GelAnalyzer. https://doi.org/www.gelanalyzer.com/index.html

  23. 23.

    Perrier, X. and Jacquemoud-Collet, J.P., DARwin software, 2006. https://doi.org/darwin.cirad.fr/

    Google Scholar 

  24. 24.

    Lakin, G.F., Biometry, Moscow: Vysshaya shkola, 1990.

    Google Scholar 

  25. 25.

    Pathak, H. and Dhawan, V., ISSR assay for ascertaining genetic fidelity of micropropagated plants of apple rootstock Merton 793, In Vitro Cell. Dev. Biol. Plant., 2012, vol. 48, no. 1, pp. 137–143.

    Article  CAS  Google Scholar 

  26. 26.

    Tarikahya-Hacioglu, B., Molecular diversity of the wild Crambe (Brassicaceae) taxa in Turkey detected by inter-simple sequence repeats (ISSRs), Ind. Crops Prod., 2015, vol. 80, pp. 214–219.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. O. Pushkarova.

Additional information

Original Ukrainian Text © N.O. Pushkarova, O.R. Lakhneko, V.B. Belokurova, B.V. Morgun, M.V. Kuchuk, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 4, pp. 35–44.

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pushkarova, N.O., Lakhneko, O.R., Belokurova, V.B. et al. Peculiarities of Regeneration and Genetic Variability of Crambe koktebelica and Crambe tataria Plants in vitro. Cytol. Genet. 52, 269–275 (2018). https://doi.org/10.3103/S0095452718040096

Download citation

Keywords

  • microclonal propagation
  • in vitro culture
  • DNA-markers
  • Crambe koktebelica
  • Crambe tataria