Skip to main content
Log in

Assessment of Nanotoxicity (Cadmium Sulphide and Copper Oxide) Using Cytogenetical Parameters in Coriandrum sativum L. (Apiaceae)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Present investigation deals with cytogenetical consequences (using attributes namely, seed germination, seedling length, mitotic index, mitotic and meiotic abnormalities and pollen grain sterilities) of cadmium sulphide (CdS) and copper oxide (CuO) nanoparticles (NPs) treatment in Coriandrum sativum L. (Family: Apiaceae, spice of commerce). Ethyl methanesulphonate (EMS), a conventional mutagen is used as positive control. Results suggest that both CdS- and CuO-NPs can induce growth inhibition and cause cytological aberrations in both mitotic and meiotic cells in the studied species. EMS also responds similarly as that of NPs. Study highlights that rooted plant species can be effectively used as model for assessment of nanotoxicity considering cytogenetical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roco, M.C., Broader societal issues of nanotechnology, J. Nanopart. Res., 2003, vol. 5, pp. 181–189.

    Article  Google Scholar 

  2. Scrinis, G. and Lyons, K., The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems, Int. J. Sociol. Agric. Food, 2007, vol. 15, no. 2, pp. 22–44.

    Google Scholar 

  3. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., and Kumar, D.S., Nanoparticulate material delivery to plants, Plant Sci., 2010, vol. 179, no. 3, pp. 154–163. org/doi 10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  4. Philip, D., Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf, Spectrochim Acta. A Mol. Biomol. Spectrosc., 2010, vol. 77, pp. 807–810.

    Article  PubMed  CAS  Google Scholar 

  5. Remédios, C., Rosrio, F., and Bastos, V., Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects, J. Bot., 2012, vol. 2012, pp. 1–8. org/doi 10.1155/2012/751686

    Article  CAS  Google Scholar 

  6. Masarovičová, E. and Král'ová, K., Metal nanoparticles and plants, Ecol. Chem. Eng. Soc., 2013, vol. 20, no. 1, pp. 9–22. org/doi 10.2478/eces-2013-0001

    Google Scholar 

  7. Biswas, P. and Wu, C.Y., Nanoparticles and the environment, J. Air Waste Manag. Assoc., 2005, vol. 55, no. 6, pp. 708–46.

    Article  PubMed  CAS  Google Scholar 

  8. Nowack, B. and Bucheli, T.D., Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut., 2007, vol. 150, pp. 5–22.

    Article  PubMed  CAS  Google Scholar 

  9. Buzea, C., Pacheco, I.I., and Robbie, K., Nanomaterials and nanoparticles: sources and toxicity, Biointerphases, 2007, vol. 2, no. 4, pp. MR17–MR71.

    Article  PubMed  Google Scholar 

  10. Tervonen, T., Linkov, I., Figueira, J.R., Steevens, J., Chappell, M., and Merad, M., Risk-based classification system of nanomaterial, J. Nanopart. Res., 2009, vol. 11, no. 4, pp. 757–66. doi 10.1007/s11051-008-9546-1

    Article  CAS  Google Scholar 

  11. Lidén, G., The European commission tries to define nanomaterials, Ann. Occup. Hyg., 2011, vol. 55, no. 1, pp. 1–5. doi 10.1093/annhyg/meq092

    PubMed  Google Scholar 

  12. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 2011, vol. 59, no. 8, pp. 3485–3498. doi 10.1021/jf104517j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pillai, K.V., Gray, P.J., Tien, C.C., Bleher, R., Sung, L.P., and Duncan, T.V., Environmental release of core-shell semiconductor nanocrystals from free-standing polymer nanocomposite films, Environ. Sci. Nano, 2016, vol. 3, no. 3, pp. 657–669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A., Blume, Ya.B., and Yemets, A.I., Biosynthesis of luminescent CdS quantum dots using plant hairy root culture, Nanoscale Res. Lett., 2014, vol. 9, p. 686. doi 10.1186/1556-276X-9-686

    Article  PubMed Central  CAS  Google Scholar 

  15. Dhineshbabu, N.R., Rajendran, V., Nithyavathy, N., and Vetumperumal, R., Study of structural and optical properties of cupric oxide nanoparticles, Appl. Nanosci., 2016, vol. 6, no. 6, pp. 933–939.

    Article  CAS  Google Scholar 

  16. Kumari, M., Mukherjee, A., and Chandrasekaran, N., Genotoxicity of silver nanoparticles in Allium cepa, Sci. Total Environ., 2009, vol. 407, no. 19, pp. 5243–5246. doi 10.1016/j.scitotenv.2009.06.024

    Article  PubMed  CAS  Google Scholar 

  17. Castiglione, M.R., Giorgetti, L., Geri, C., and Cremonini, R., The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L., J. Nanopart. Res., 2011, vol. 13, no. 6, pp. 2443–2449.

    Article  CAS  Google Scholar 

  18. Patlolla, A.K., Berry, A., May, L., and Tchounwou, P.B., Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles, Int. J. Environ. Res. Public Health, vol. 9, no. 5, pp. 1649–1662. doi 10.3390/ijerph9051649

  19. Nagaonkar, D., Shende, S., and Rai, M., Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa, Biotechnol. Prog., 2015, vol. 31, no. 2, pp. 557–565. doi 10.1002/btpr.2040

    Article  PubMed  CAS  Google Scholar 

  20. Kumbhakar, D.V., Datta, A.K., and Mandal, A., Das D., Gupta S., Ghosh B., Halder S., Dey S. Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin)—can nanoparticles act as mutagenic agents?, J. Exp. Nanosci., 2016, vol. 11, no. 11, pp. 823–839. doi.org/doi 10.1080/17458080.2016.1149236

    Article  CAS  Google Scholar 

  21. Halder, S., Mandal, A., Das, D., Datta, A.K., Chattopadhyay, A.P., Gupta, S., and Kumbhakar, D.V., Effective potentiality of synthesised CdS nanoparticles in inducing genetic variation on Macrotyloma uniflorum (Lam.) Verdc., BioNanoScience, 2015, vol. 5, no. 3, pp. 171–180. doi 10.1007/s12668-015-0176-7

    Article  Google Scholar 

  22. Marks, G.E., An aceto-carmine glycerol jelly for use in pollen-fertility counts, Stain Technol., 1954, vol. 29, no. 5, p. 277.

    Article  PubMed  CAS  Google Scholar 

  23. Lin, D. and Xing, B., Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 2007, vol. 150, no. 2, pp. 243–250. doi 10.1016/j.envpol.2007.01.016

    Article  PubMed  CAS  Google Scholar 

  24. Lin, D. and Xing, B., Root uptake and phytotoxicity of ZnO nanoparticles, Environ. Sci. Technol., 2008, vol. 42, no. 15, pp. 5580–5585.

    Article  PubMed  CAS  Google Scholar 

  25. Stampoulis, D., Sinha, S.K., and White, J.C., Assaydependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol., 2009, vol. 43, no. 24, pp. 9473–9479. doi 10.1021/es901695c

    Article  PubMed  CAS  Google Scholar 

  26. Tan, X.M., Lin, C., and Fugetsu, B., Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells, Carbon, 2009, vol. 47, no. 15, pp. 3479–33487.

    Article  CAS  Google Scholar 

  27. Mushtaq, Y.K., Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination, J. Environ. Sci. Health Tox. Hazard Subst. Environ. Eng., 2011, vol. 46, no. 14, pp. 1732–1735. doi.org/doi 10.1080/10934529.2011.633403

    Article  CAS  Google Scholar 

  28. Atha, D.H., Wang, H., Petersen, E.J., Cleveland, D., Holbrook, R.D., Jaruga, P., Dizdaroglu, M., Xing, B., and Nelson, B.C., Copper oxide nanoparticles mediated DNA damage in terrestrial plant models, Environ. Sci. Technol., 2012, vol. 46, no. 3, pp. 1819–1827. doi 10.1021/es202660k

    Article  PubMed  CAS  Google Scholar 

  29. Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., and Liu, Y., Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study, Nanotoxicology, 2012, vol. 6, no. 3, pp. 241–248. doi 10.3109/17435390.2011.570462

    Article  PubMed  CAS  Google Scholar 

  30. Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R., and Tao, M.X., Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism, Soybean Sci., 2002, vol. 21, no. 3, pp. 168–171.

    CAS  Google Scholar 

  31. Lin, B.S., Diao, S.Q., Li, C.H., Fang, L.J., Qiao, S.C., and Yu, M., Effects of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings, J. For. Res., 2004, vol. 15, pp. 138–140.

    Article  CAS  Google Scholar 

  32. Zheng, L., Hong, F., Lu, S., and Liu, C., Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace. Elem. Res., 2005, vol. 104, pp. 83–91.

    Article  PubMed  CAS  Google Scholar 

  33. Raskar, S.V. and Laware, S.L., Effect of zinc oxide nanoparticles on cytology and seed germination in onion, Int. J. Curr. Microbiol. App. Sci., 2014, vol. 3, no. 2, pp. 467–473.

    CAS  Google Scholar 

  34. Lee, H.L., Issam, A.M., Belmahi, M., Assouar, M.B., Rinnert, H., and Alnot, M., Thermal and optical properties of CdS nanoparticles in thermotropic liquid crystal monomers, Materials, 2010, vol. 3, pp. 2069–2086. doi 10.3390/ma3032069

    Article  PubMed Central  CAS  Google Scholar 

  35. Moustafa, Y., Physiological and cytogenetic responses of wheat and barley to silver nanopriming treatment, Int. J. App. Biol. Pharma Technol., 2014, vol. 5, no. 3, pp. 265–278.

    Google Scholar 

  36. Amato, F., The cytological study of chemical mutagens, Genet. Iberica, 1952, vol. 4, pp. 3–20.

    Google Scholar 

  37. Datta, A.K., Biswas, A.K., and Sen, S., Gamma radiation sensitivity in Nigella sativa L., Cytologia, 1986, vol. 51, no. 3, pp. 609–615. doi.org/doi10.1508/cytologia. 51.609

    Article  Google Scholar 

  38. Sparrow, A.H., Mosses, M.J., and Steel, R., Cytological and cytochemical approach to an understanding of radiation damage in dividing cells, Brit. J. Radiol., 1952, vol. 25, no. 292, pp. 182–188.

    Article  PubMed  CAS  Google Scholar 

  39. Gaulden, M.E., Hypothesis: Some mutagens directly alter specific chromosomal proteins (DNA topoisomerease II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations, Mutagenesis, 1987, vol. 2, no. 5, pp. 357–365.

    Article  PubMed  CAS  Google Scholar 

  40. Akhtar, A., Ansari, M.Y.K., and Hisamuddin, A., Cytological effect of ethyl methane sulphonate and sodium, Int. J. Plant Animal Environ. Sci., 2012, vol. 2, pp. 70–75.

    CAS  Google Scholar 

  41. Kozgar, M.I., Hussain, S., Wani, M.R., and Khan, S., The role of cytological aberrations in crop improvement through induced mutagenesis, Imp. Crops Era Clim. Changes, 2014, vol. 2, pp. 283–296.

    Google Scholar 

  42. Khursheed, S., Laskar, R.A., Raina, A., Amin, R., and Khan, S., Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis, Chromosome Sci., 2015, vol. 18, nos. 3–4, pp. 47–51.

    CAS  Google Scholar 

  43. Blixt, S., Studies on induced mutations in peas VIII. Ethylene imine and gamma ray treatment of the variety Witham wonder, Agric. Hort. Genet., 1964, vol. 22, pp. 171–183.

    Google Scholar 

  44. Ghosh, A. and Datta, A.K., Karyotyping of Nigella sativa L. (black cumin) and Nigella damascene L. (lovein-a-mist) by image analyzing system, Cytologia, 2006, vol. 71, no. 1, pp. 1–4.

    Article  Google Scholar 

  45. Canas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E.H., and Olszyk, D., Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1922–1931.

    Article  PubMed  CAS  Google Scholar 

  46. El-Temsah, Y.S. and Joner, E.J., Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil, Environ. Toxicol., 2012, vol. 27, no. 1, pp. 42–49.

    Article  PubMed  CAS  Google Scholar 

  47. Ma, Y., Kuang, L., He, X., Bai, W., Ding, Y., Zhang, Z., Zhao, Y., and Chai, Z., Effect of rare earth oxide nanoparticles on root elongation of plants, Chemosphere, 2010, vol. 78, no. 3, pp. 273–279.

    Article  PubMed  CAS  Google Scholar 

  48. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 2011, vol. 59, no. 8, pp. 3485–3498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yang, L. and Watts, D.J., Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett., 2005, vol. 158, no. 4, pp. 122–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Datta.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A., Datta, A.K., Das, D. et al. Assessment of Nanotoxicity (Cadmium Sulphide and Copper Oxide) Using Cytogenetical Parameters in Coriandrum sativum L. (Apiaceae). Cytol. Genet. 52, 299–308 (2018). https://doi.org/10.3103/S0095452718040084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718040084

Keywords

Navigation