Advances, Problems, and Prospects of Genetic Transformation of Fungi
Article
First Online:
Received:
- 18 Downloads
Abstract
Advances, problems, and prospects of genetic transformation of fungi are described. Features distinguishing fungi from other organisms are analyzed. Those features should be taken into consideration while preparing genetic material for transformation. The ways to overcome problems associated with hyphae apical growth, cell wall thickness, the heterokaryotic life cycle stage, and mechanisms of immune defense are described. A comparative analysis of major methods for transformation of fungi at different stages of their life cycle was performed. Stability of genetically modified fungi and advances in transformation are discussed.
Keywords
fungi genetic transformationPreview
Unable to display preview. Download preview PDF.
References
- 1.Mishra, N.C. and Tatum, E.L., Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, no. 12, pp. 3875–3879.PubMedPubMedCentralCrossRefGoogle Scholar
- 2.Hinnen, A., Hicks, J.B., and Fink, G.R., Transformation of yeast, Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, no. 4, pp. 1929–1923.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Nevalainen, H. and Peterson, R., Making recombinant proteins in filamentous fungi: are we expecting too much?, Front. Microbiol., 2014, vol. 5, no. 75, pp. 1–10.Google Scholar
- 4.Su, X., Schmitz, G., Zhang, M., Mackie, R.I., and Cann, I.K., Heterologous gene expression in filamentous fungi, Adv. Appl. Microbiol., 2012, vol. 81, no. 1, pp. 1–61.PubMedGoogle Scholar
- 5.El Enshasy, H.A. and Hatti-Kaul, R., Mushroom immunomodulators: unique molecules with unlimited applications, Trend Biotechnol., 2013, vol. 31, no. 12, pp. 668–677.CrossRefGoogle Scholar
- 6.Wasser, S.P., Medicinal mushroom science: current perspectives, advances, evidences, and challenges, Biomed. J., 2014, vol. 37, no. 6, pp. 345–356.PubMedCrossRefGoogle Scholar
- 7.Singh, S.S., Wang, H., Chan, Y.S., Pan, W., Dan, X., Yin, C.M., Akkouh, O., and Ng, T.B., Lectins from edible mushrooms, Molecules, 2014, vol. 20, no. 1, pp. 446–469.PubMedCrossRefGoogle Scholar
- 8.Wösten, H.A. and Scholtmeijer, K., Applications of hydrophobins: current state and perspectives, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 4, pp. 1587–1597.PubMedCrossRefGoogle Scholar
- 9.Howard, R.J., Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution, J. Cell Sci., 1981, vol. 48, no. 1, pp. 89–103.PubMedGoogle Scholar
- 10.Bauer, R., Mendgen, K., and Oberwinkler, F., Septal pore apparatus of the smut Ustacystis waldsteiniae, Mycologia, 1995, vol. 87, no. 1, pp. 18–24.CrossRefGoogle Scholar
- 11.Shepherd, V.A., Orlovich, D.A., and Ashford, A.E., Cell-to-cell transport via motile tubules in growing hyphae of a fungus, J. Cell Sci., 1993, vol. 105, no. 4, pp. 1173–1178.PubMedGoogle Scholar
- 12.Farrag, R.M., Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt, Pol. J. Microbiol., 2009, vol. 58, no. 4, pp. 327–338.PubMedGoogle Scholar
- 13.Muller, W.H., van Aelst, A.C., van der Krift, T.P., and Boekhout, T., Scanning electron microscopy of the septal pore cap of the basidiomycete Schizophyllum commune, Can. J. Microbiol., 1994, vol. 40, no. 10, pp. 879–883.CrossRefGoogle Scholar
- 14.Selitrennikoff, C.P., Antifungal proteins, Appl. Environ. Microbiol., 2001, vol. 67, no. 7, pp. 2883–2894.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Hofsten, B. and Hofsten, A., Ultrastructure of a thermotolerant basidiomycete possibly suitable for production of food protein, Appl. Microbiol., 1974, vol. 27, no. 6, pp. 1142–1148.PubMedPubMedCentralGoogle Scholar
- 16.Nieuwenhuis, B.P., Debets, A.J., and Aanen, D.K., Sexual selection in mushroom-forming basidiomycetes, Proc. Biol. Sci., 2011, vol. 278, no. 1702, pp. 152–157.PubMedCrossRefGoogle Scholar
- 17.Kothe, E., Mating-type genes for basidiomycete strain improvement in mushroom farming, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 5–6, pp. 602–612.PubMedCrossRefGoogle Scholar
- 18.Griffiths, A.J., Natural plasmids of filamentous fungi, Microbiol. Rev., 1995, vol. 59, no. 4, pp. 673–685.PubMedPubMedCentralGoogle Scholar
- 19.Gems, D., Johnstone, I.L., and Clutterbuck, A.J., An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency, Gene, 1991, vol. 98, no. 1, pp. 61–67.PubMedCrossRefGoogle Scholar
- 20.Schoberle, T.J., Nguyen-Coleman, C.K., and May, G.S., Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi, Fungal Genet. Biol., 2013, vol. 58-59, no. 1, pp. 1–9.PubMedCrossRefGoogle Scholar
- 21.Alani, E., Cao, L., and Kleckner, N., A method for gene disruption that allows repeated use of ura3 selection in the construction of multiply disrupted yeast strains, Genetics, 1987, vol. 116, no. 4, pp. 541–545.PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Rothstein, R.J., One-step gene disruption in yeast, Methods Enzymol., 1983, vol. 101, pp. 202–211.PubMedCrossRefGoogle Scholar
- 23.Enfert, C., Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5’-decarboxilase gene, pyrG, as a unique transformation marker, Curr. Genet., 1996, vol. 30, no. 1, pp. 76–82.PubMedCrossRefGoogle Scholar
- 24.Daboussi, M.J., Djeballi, A., Gerlinger, C., Blaiseau, P.L., Bouvier, I., Cassan, M., Lebrun, M.H., Parisot, D., and Brygoo, Y., Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans, Curr. Genet., 1989, vol. 15, no. 6, pp. 453–456.PubMedCrossRefGoogle Scholar
- 25.Bouxton, F.P., Gwynne, D.I., and Davies, R.W., Cloning of a new bidirectionally selectable marker for Aspergillus strain, Gene, 1989, vol. 84, no. 2, pp. 329–334.CrossRefGoogle Scholar
- 26.Hynes, M.J. and Pateman, J.A., The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. 2. Mutants resistant to fluoroacetamide, Mol. Gen. Genet., 1970, vol. 108, no. 2, pp. 107–116.PubMedCrossRefGoogle Scholar
- 27.Debets, A.J., Swart, K., Holub, E.F., Goosen, T., and Bos, C.J., Genetic analysis of amdS transformants of Aspergillus niger and their use in chromosome mapping, Mol. Gen. Genet., 1990, vol. 222, nos. 2–3, pp. 284–290.PubMedCrossRefGoogle Scholar
- 28.Gouka, R.J., van Hartingsveldt, W., Bovenberg, R.A., van Zegil, C.M., Hondel, C.A., and van Gorcom, R.F., Development of a new transformant selection system for Penicillium crysogenum: isolation and characterization of the P. crysogenum acetyl-coenzime A synthetase gene (facA) and its use as a homologous selection marker, Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 4, pp. 514–519.PubMedCrossRefGoogle Scholar
- 29.Burns, C., Gregory, K.E., Kirby, M., Cheung, M.K., Riquelme, M., Elliott, T.J., Challen, M.P., Bailey, A., and Foster, G.D., Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns, Fungal Genet. Biol., 2005, vol. 42, no. 3, pp. 191–199.PubMedCrossRefGoogle Scholar
- 30.Heneghan, M.N., Porta, C., Zhang, C., Burton, K.S., Challen, M.P., Bailey, A.M., and Foster, G.D., Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter, Appl. Environ. Microbiol., 2009, vol. 75, no. 3, pp. 792–801.PubMedCrossRefGoogle Scholar
- 31.Binninger, D.M., Skrzynia, C., Pukkila, P.J., and Casselton, L.A., DNA-mediated transformation of the basidiomycete Coprinus cinereus, EMBO J., 1987, vol. 6, no. 4, pp. 835–840.PubMedPubMedCentralGoogle Scholar
- 32.Tilby, M.J., Tryptophan biosynthesis in Coprinus lagopus: a genetic analysis of mutants, J. Gen. Microbiol., 1976, vol. 93, no. 1, pp. 126–132.PubMedCrossRefGoogle Scholar
- 33.Kiguchi, T. and Yanagi, S.O., Intraspecific heterokaryon and fruit body formation in Coprinus macrorhizus by protoplast fusion of auxotrophic mutants, Appl. Microbiol. Biotechnol., 1985, vol. 22, no. 2, pp. 121–127.CrossRefGoogle Scholar
- 34.Yanai, K., Yonekura, K., Usami, H., Hirayama, M., Kajiwara, S., Yamazaki, T., Shishido, K., and Adachi, T., The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 3, pp. 472–475.PubMedCrossRefGoogle Scholar
- 35.Randall, T. and Reddy, C.A., An improved transformation vector for the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium, Gene, 1991, vol. 103, no. 1, pp. 125–130.PubMedCrossRefGoogle Scholar
- 36.Punt, P.J., Oliver, R.P., Digemanse, M.A., Pouwels, P.H., and Hondel, C.A., Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli, Gene, 1987, vol. 56, no. 1, pp. 117–124.PubMedCrossRefGoogle Scholar
- 37.Leung, H., Lethtinen, U., Karjelainen, R., Skinner, D., Tooley, P., Leong, S., and Ellingboe, A., Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance, Curr. Genet., 1990, vol. 17, no. 5, pp. 409–411.PubMedCrossRefGoogle Scholar
- 38.Tunlid, A., Ahman, J., and Oliver, R.P., Transformation of the nematode-trapping fungus Arthrobotrys oligospora, FEMS Microbiol. Letts., 1999, vol. 173, no. 1, pp. 111–116.CrossRefGoogle Scholar
- 39.Herrera-Estrella, A., Goldman, G.H., and van Montagu, M., High-efficiency transformation system for the biocontrol agents, Trichoderma spp, Mol. Microbiol., 1990, vol. 4, no. 5, pp. 839–843.PubMedCrossRefGoogle Scholar
- 40.Degefu, Y. and Hanif, M., Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus, Arch. Microbiol., 2003, vol. 180, no. 4, pp. 279–284.PubMedCrossRefGoogle Scholar
- 41.Orbach, M.S., Porro, E.B., and Yanafsky, C., Cloning and characterization of the gene of β-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker, Mol. Cell. Biol., 1986, vol. 6, no. 7, pp. 2452–2461.PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Goldman, G.H., Temmerman, W., Jacobs, D., Contreras, R., van Montagu, M., and Herrera-Estrella, A., A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antibiotic drug methyl benzimidazole-2-yl-carbamate, Mol. Gen. Genet., 1993, vol. 240, no. 1, pp. 73–80.PubMedCrossRefGoogle Scholar
- 43.Gold, S.E., Bakkeren, G., Davies, J.E., and Kronstand, J.W., Three selectable markers for transformation of Ustilago maydis, Gene, 1994, vol. 142, no. 2, pp. 225–230.PubMedCrossRefGoogle Scholar
- 44.Ward, M., Wilson, L.J., Carmona, C.L., and Turner, G., The oliC3 gene of Aspergillus niger: isolation, sequence and use as a selectable marker for transformation, Curr. Genet., 1988, vol. 14, no. 1, pp. 37–42.PubMedCrossRefGoogle Scholar
- 45.Bull, J.H., Smith, D.J., and Turner, G., Transformation of Penicillium chrysogenum with a dominant selectable marker, Curr. Genet., 1988, vol. 13, no. 5, pp. 377–382.PubMedCrossRefGoogle Scholar
- 46.Austin, B., Hall, R.M., and Tyler, B.M., Optimized vectors and selection for transformation of Neurospora crassa and Aspergillus nidulans to bleomycin and phleomycin resistance, Gene, 1990, vol. 93, no. 1, pp. 157–162.PubMedCrossRefGoogle Scholar
- 47.Kolar, M., Punt, P.J., Hondel, C.A., and Schwab, H., Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene, Gene, 1988, vol. 62, no. 1, pp. 127–134.PubMedCrossRefGoogle Scholar
- 48.Carramolino, L., Lozano, M., Perez-Aranda, A., Rubio, V., and Sánchez, F., Transformation of Penicillium chrysogenum to sulfonamide resistance, Gene, 1989, vol. 77, no. 1, pp. 31–38.PubMedCrossRefGoogle Scholar
- 49.Inglis, P.W., Biolistic co-transformation of Metarhizium anisopliae var. acridum strain CG423 with green fluorescent protein and resistance to glucosinate ammonium, FEMS Microbiol. Letts., 2000, vol. 191, no. 2, pp. 249–254.CrossRefGoogle Scholar
- 50.Avalos, J., Geever, R.F., and Case, M.E., Bialaphos resistance as a dominant selectable marker in Neurospora crassa, Curr. Genet., 1989, vol. 16, nos. 5–6, pp. 369–372.PubMedCrossRefGoogle Scholar
- 51.Keon, J.P., White, G.A., and Hargreaves, J.A., Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis, Curr. Genet., 1991, vol. 19, no. 6, pp. 475–481.PubMedCrossRefGoogle Scholar
- 52.Fernández-Ábalos, J.M., Fox, H., Pitt, C., Well, B., and Doonan, J.H., Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans, Mol. Microbiol., 1998, vol. 27, no. 1, pp. 121–130.PubMedCrossRefGoogle Scholar
- 53.Spellig, T., Bottin, A., and Kahmann, R., Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis, Mol. Gen. Genet., 1996, vol. 252, no. 5, pp. 503–509.PubMedGoogle Scholar
- 54.Cormack, B.P., Bertram, G., Egerton, M., Gow, N.A., Falkow, S., and Brown, A.J., Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans, Microbiology, 1997, vol. 143, no. 2, pp. 303–311.PubMedCrossRefGoogle Scholar
- 55.Olmedo-Monfil, V., Mendoza-Mendoza, A., Gomez, I., Cortes, C., and Herrera-Estrella, A., Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride, Mol. Genet. Genom., 2002, vol. 267, no. 6, pp. 703–712.CrossRefGoogle Scholar
- 56.Olmedo-Monfil, V., Cortés-Penagos, C., and Herrera- Estrella, A., Three decades of fungal transformation: key concepts and applications, Methods Mol. Biol., 2004, vol. 267, pp. 297–313.PubMedGoogle Scholar
- 57.Lee, K. and Lee, S.E., Saccharomyces cerevisiae Sae2-and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining, Genetics, 2007, vol. 176, no. 4, pp. 2003–2014.PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Mezard, C. and Nicolas, A., Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae, Mol. Cell Biol., 1994, vol. 14, no. 2, pp. 1278–1292.PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Symington, L.S. and Gautier, J., Double-strand break end resection and repair pathway choice, Ann. Rev. Genet., 2011, vol. 45, pp. 247–271.PubMedCrossRefGoogle Scholar
- 60.Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J., Yeast transformation: a model system for the study of recombination, Proc. Natl. Acad. Sci. U. S. A., 1981, vol. 78, no. 10, pp. 6354–6358.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Ishibashi, K., Suzuki, K., Ando, Y., Takakura, C., and Inoue, H., Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 40, pp. 14871–14876.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H., Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 33, pp. 12248–12253.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Nakazawa, T., Ando, Y., Kitaaki, K., Nakahori, K., and Kamada, T., Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea, Fungal Genet. Biol., 2011, vol. 48, no. 10, pp. 939–946.PubMedCrossRefGoogle Scholar
- 64.Leem, Y.E., Kim, S.J., Ross, I.K., and Choi, H.T., Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration, FEMS Microbiol. Letts., 1999, vol. 172, no. 1, pp. 35–40.CrossRefGoogle Scholar
- 65.Maehara, T., Yoshida, M., Ito, Y., Tomita, S., Takabatake, K., Ichinose, H., and Kaneko, S., Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain, Biosci. Biotechnol. Biochem., 2010, vol. 74, no. 5, pp. 1126–1128.PubMedCrossRefGoogle Scholar
- 66.Kim, S., Song, J., and Choi, H.T., Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration, FEMS Microbiol. Letts., 2004, vol. 233, no. 2, pp. 201–204.CrossRefGoogle Scholar
- 67.Hirano, T., Sato, T., Yaegashi, K., and Enei, H., Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance, Mol. Gen. Genet., 2000, vol. 263, no. 6, pp. 1047–1052.PubMedCrossRefGoogle Scholar
- 68.Nakade, K., Watanabe, H., Sakamoto, Y., and Sato, T., Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence, Microbiol. Res., 2011, vol. 166, no. 6, pp. 484–493.PubMedCrossRefGoogle Scholar
- 69.Sato, T., Yaegashi, K., Ishii, S., Hirano, T., Kajiwara, S., Shishido, K., and Enei, H., Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA, Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 12, pp. 2346–2350.PubMedCrossRefGoogle Scholar
- 70.Irie, T., Sato, T., Saito, K., Honda, Y., Watanabe, T., Kuwahara, M., and Enei, H., Construction of a homologous selectable marker gene for Lentinula edodes transformation, Biosci. Biotechnol. Biochem., 2003, vol. 67, no. 9, pp. 2006–2009.PubMedCrossRefGoogle Scholar
- 71.Noh, W., Kim, S.W., Bae, D.W., Kim, J.Y., and Ro, H.S., Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzyme-mediated integration, J. Microbiol., 2010, vol. 48, no. 2, pp. 253–256.PubMedCrossRefGoogle Scholar
- 72.Yin, Y., Liu, Y., Jin, H., Wang, S., Zhao, S., Geng, X., Li, M., and Xu, F., Polyethylene glycol-mediated transformation of fused egfphph gene under the control of gpd promoter in Pleurotus eryngii, Biotechnol. Lett., 2012, vol. 34, no. 10, pp. 1895–1900.PubMedCrossRefGoogle Scholar
- 73.Lin, J., Zheng, M., Wang, J., Shu, W., and Guo, L., Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis, Prog. Nat. Sci., 2008, vol. 18, no. 7, pp. 819–824.CrossRefGoogle Scholar
- 74.Irie, T., Honda, Y., Hirano, T., Sato, T., Enei, H., Watanabe, T., and Kuwahara, M., Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos 5-6, pp. 707–709.PubMedCrossRefGoogle Scholar
- 75.Irie, T., Honda, Y., Watanabe, T., and Kuwahara, M., Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA, Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 5, pp. 563–565.PubMedCrossRefGoogle Scholar
- 76.Joh, J.H., Kim, B.G., Chu, K.S., Kong, W.S., Yoo, Y.B., and Lee, C.S., The efficient transformation of Pleurotus ostreatus using REMI method, Mycobiology, 2003, vol. 31, no. 1, 32–35.CrossRefGoogle Scholar
- 77.Peng, M., Singh, N.K., and Lemke, P.A., Recovery of recombinant plasmids from Pleurotus ostreatus transformants, Curr. Genet., 1992, vol. 22, no. 1, pp. 53–59.PubMedCrossRefGoogle Scholar
- 78.Li, G., Li, R., Liu, Q., Wang, Q., Chen, M., and Li, B., A highly efficient polyethylene glycol-mediated transformation method for mushrooms, FEMS Microbiol. Letts., 2006, vol. 256, no. 2, pp. 203–208.CrossRefGoogle Scholar
- 79.Kim, K., Leem, Y., Kim, K., Kim, K., and Choi, H.T., Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration, FEMS Microbiol. Letts., 2002, vol. 209, no. 2, pp. 273–276.CrossRefGoogle Scholar
- 80.Kitamura, K., Kaneko, T., and Yamamoto, Y., Lysis of viable yeast cells by enzymes of Arthrobacter luteus, Arch. Biochem. Biophys., 1971, vol. 145, no. 1, pp. 402–404.PubMedCrossRefGoogle Scholar
- 81.Peterson, E.M., Hawley, R.J., and Calderone, R.A., An ultrastructural analysis of protoplast-spheroplast induction in Cryptoccocus neoformans, Can. J. Microbiol., 1976, vol. 22, no. 10, pp. 1518–1521.PubMedCrossRefGoogle Scholar
- 82.Case, M.E., Schweizer, M., Kushner, S.R., and Giles, N.H., Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5259–5263.PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Evans, C.T. and Conrad, D., An improved method for protoplast formation and its application in the fusion of Rhodotorula rubra with Saccharomyces cerevisiae, Arch. Microbiol., 1987, vol. 148, no. 1, pp. 77–82.PubMedCrossRefGoogle Scholar
- 84.Bailey, A.M., Mena, G.L., and Herrera-Estrella, L., Genetic transformation of the plant pathogens Phytophtora capsici and Phytophtora parasitica, Nucleic Acids Res., 1991, vol. 19, no. 15, pp. 4273–4278.PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Rhodes, J.C. and Kwon-Chung, K.J., Production and regeneration of protoplast from Cryptococcus, Sabouraudia, 1985, vol. 23, no. 1, pp. 77–80.PubMedCrossRefGoogle Scholar
- 86.May, G.S., Fungal Technology, Applied Molecular Genetics of Filamentous Fungi, Kinghorn, J.R. and Turner, G., Eds., Glasgow, 1992, pp. 1–27.Google Scholar
- 87.Finchman, J.R., Transformation in fungi, Microbiol. Rev., 1989, vol. 53, no. 1, pp. 148–170.Google Scholar
- 88.Hashizaki, K., Taguchi, H., Itoh, C., Sakai, H., Abe, M., Saito, Y., and Ogawa, N., Effects of poly(ethylene glycol) (PEG) chain length of PEGlipid on the permeability of liposomal bilayer membranes, Chem. Pharm. Bull. (Tokyo), 2003, vol. 51, no. 7, pp. 815–820.CrossRefGoogle Scholar
- 89.Timberlake, W.E. and Marshall, M.A., Genetic engineering of filamentous fungi, Science, 1989, vol. 244, no. 4910, pp. 1313–1317.PubMedCrossRefGoogle Scholar
- 90.He, L., Feng, J., Lu, S., Chen, Z., Chen, C., He, Y., Yi, X., and Xi, L., Genetic transformation of fungi, Int. J. Dev. Biol., 2017, vol. 61, nos. 6–7, pp. 375–381.PubMedCrossRefGoogle Scholar
- 91.Kojima, R., Arai, T., Kasumi, T., and Ogihara, J., Construction of transformation system in Penicillium purpurogenum, J. Biosci. Bioeng., 2015, vol. 119, no. 3, pp. 314–316.PubMedCrossRefGoogle Scholar
- 92.Yao, Y.R., Tian, X.L., Shen, B.M., Mao, Z.C., Chen, G.H., and Xie, B.Y., Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita, World J. Microbiol. Biotechnol., 2015, vol. 31, no. 4, pp. 549–556.PubMedCrossRefGoogle Scholar
- 93.Ito, H., Fukuda, Y., Murata, K., and Kimura, A., Transformation of intact yeast cells treated with alkali cations, J. Bacteriol., 1983, vol. 153, no. 1, pp. 163–168.PubMedPubMedCentralGoogle Scholar
- 94.Gietz, R.D., Schiestl, R.H., Willems, A.R., and Woods, R.A., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast, 1995, vol. 11, no. 4, pp. 355–360.PubMedCrossRefGoogle Scholar
- 95.Dhawale, S.S., Paietta, J.V., and Marzluf, G.A., A new, rapid and efficient transformation procedure for Neurospora, Curr. Genet., 1984, vol. 8, no. 1, pp. 77–79.PubMedCrossRefGoogle Scholar
- 96.Bej, A.K. and Perlin, M.G., A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment, Gene, 1989, vol. 80, no. 1, pp. 171–176.PubMedCrossRefGoogle Scholar
- 97.Brzobohatý, B. and Kovác, L., Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity, J. Gen. Microbiol., 1986, vol. 132, no. 11, pp. 3089–3093.PubMedGoogle Scholar
- 98.Pham, T.A., Kawai, S., and Murata, K., Visualization of the synergistic effect of lithium acetate and singlestranded carrier DNA on Saccharomyces cerevisiae transformation, Curr. Genet., 2011, vol. 57, no. 4, pp. 233–239.PubMedCrossRefGoogle Scholar
- 99.Shigekawa, K. and Dower, W.J., Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells, BioTechniques, 1988, vol. 6, no. 8, pp. 742–751.PubMedGoogle Scholar
- 100.Ward, M., Kodama, K.H., and Wilson, L.J., Transformation of Aspergillus awamori and A. niger by electroporation, Exp. Mycol., 1989, vol. 13, no. 3, pp. 289–293.CrossRefGoogle Scholar
- 101.Goldman, G.H., van Montagu, M., and Herrera-Estrella, A., Transformation of Trichoderma harzianum by high-voltage electric pulse, Curr. Genet., 1990, vol. 17, no. 2, pp. 169–174.CrossRefGoogle Scholar
- 102.Chakraborty, B.N., Patterson, N.A., and Kapoor, M., An electroporation-based system for high efficiency transformation of germinated conidia of filamentous fungi, Can. J. Microbiol., 1991, vol. 37, no. 11, pp. 858–863.PubMedCrossRefGoogle Scholar
- 103.Edman, J.C. and Kwon-Chung, K.J., Isolation of the URA5 gene from Cryptococcus neoformans and its use as a selective marker for transformation, Mol. Cell. Biol., 1990, vol. 10, no. 9, pp. 4538–4544.PubMedPubMedCentralCrossRefGoogle Scholar
- 104.van de Rhee, M.D., Graca, P.M., Huizing, H.J., and Mooibroek, H., Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance, Mol. Gen. Genet., 1996, vol. 250, no. 3, pp. 252–258.PubMedGoogle Scholar
- 105.Kuo, C.Y., Chou, S.Y., Hseu, R.S., and Huang, C.T., Heterologous expression of EGFP in enoki mushroom Flammulina velutipes, Bot. Stud., 2010, vol. 51, no. 3, pp. 303–309.Google Scholar
- 106.Sun, L., Cai, H., Xu, W., Hu, Y., Gao, Y., and Lin, Z., Efficient transformation of the medicinal mushroom Ganoderma lucidum, Plant Mol. Biol. Rep., 2001, vol. 19, no. 4, pp. 383–384.CrossRefGoogle Scholar
- 107.Sun, L., Cai, H., Xu, W., Hu, Y., and Lin, Z., CaMV 35s promoter directs β-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus, Mol. Biotechnol., 2002, vol. 20, no. 3, pp. 239–244.PubMedCrossRefGoogle Scholar
- 108.Kim, J.K., Park, Y.J., Kong, W.S., and Kang, H.W., Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes, Mycobiology, 2010, vol. 38, no. 4, pp. 331–335.PubMedPubMedCentralCrossRefGoogle Scholar
- 109.Kuo, C.Y. and Huang, C.T., A reliable transformation method and heterologous expression of β-glucuronidase in Lentinula edodes, J. Microbiol. Methods, 2008, vol. 72, no. 2, pp. 111–115.PubMedCrossRefGoogle Scholar
- 110.Simonis, P., Kersulis, S., Stankevich, V., Kaseta, V., Lastauskiene, E., and Stirke, A., Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields, Bioelectrochemistry, 2017, vol. 115, pp. 19–25.PubMedCrossRefGoogle Scholar
- 111.Miklenić, M., Žunar, B., Štafa, A., and Svetec, I., Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis, FEMS Yeast Res., 2015, vol. 15, no. 8, fov096.PubMedCrossRefGoogle Scholar
- 112.Rocha-Ramirez, V., Omero, C., Chet, I., Horwitz, B.A., and Herrera-Estrella, A., Trichoderma atroviride Gprotein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation, Eukaryot. Cell, 2002, vol. 1, no. 4, pp. 594–605.PubMedPubMedCentralCrossRefGoogle Scholar
- 113.Sunagawa, M. and Magae, Y., Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment, FEMS Microbiol. Letts., 2002, vol. 211, no. 2, pp. 143–146.CrossRefGoogle Scholar
- 114.Sunagawa, M., Murata, H., Miyazaki, Y., and Nakamura, M., Transformation of Lyophyllum decastes by particle bombardment, Mycoscience, 2007, vol. 48, no. 3, pp. 195–197.CrossRefGoogle Scholar
- 115.Schiestl, R.H. and Petes, T.D., Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, no. 17, pp. 7585–7589.PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Kuspa, A. and Loomis, W.F., Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 18, pp. 8803–8807.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Dynes, J.L., Clark, A.M., Shaulsky, G., Kuspa, A., Loomis, W.F., and Firtel, R.A., LagC is required for cell–cell interactions that are essential for cell-type differentiation in Dictyostelium, Genes Dev., 1994, vol. 8, no. 8, pp. 948–958.PubMedCrossRefGoogle Scholar
- 118.Lu, S., Lyngholm, L., Yan, G., Bronson, C., Yoder, O.C., and Turgeon, B.G., Tagged mutation at the tox1 locus of Cochliobolus heterostrophus by restriction enzymemediated integration, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 26, pp. 12649–12653.PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Bölker, M., Böhnert, H.U., Braun, K.H., Görl, J., and Kahmann, R., Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI), Mol. Gen. Genet., 1995, vol. 248, no. 5, pp. 547–552.PubMedCrossRefGoogle Scholar
- 120.Sweigard, J.A., Carroll, A.M., Farral, L., Chumley, F.G., and Valent, B., Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis, Mol. Plant–Microbe Interact., 1998, vol. 11, no. 5, pp. 404–412.PubMedCrossRefGoogle Scholar
- 121.Thon, M.R., Nuckles, E.M., and Vaillancourt, L.J., Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola, Mol. Plant–Microbe Interact., 2000, vol. 13, no. 12, pp. 1356–1365.PubMedCrossRefGoogle Scholar
- 122.Bundock, P., de Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J., Trans-kingdom t-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae, EMBO J., 1995, vol. 14, no. 13, pp. 3206–3214.PubMedPubMedCentralGoogle Scholar
- 123.De Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G., Agrobacterium tumefaciens-mediated transformation of filamentous fungi, Nat. Biotechnol., 1998, vol. 16, no. 9, pp. 839–842.PubMedCrossRefGoogle Scholar
- 124.Frandsen, R.J., A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation, J. Microbiol. Methods, 2011, vol. 87, no. 3, pp. 247–262.PubMedCrossRefGoogle Scholar
- 125.Wang, D., He, D., Li, G., Gao, S., Lv, H., Shan, Q., and Wang, L., An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus, J. Microbiol. Methods, 2014, vol. 98, pp. 114–118.PubMedCrossRefGoogle Scholar
- 126.Crespo-Sempere, A., Lopez-Perez, M., Martinez-Culebras, P.V., and Gonzalez-Candelas, L., Development of a green fluorescent tagged strain of Aspergillus carbonarius to monitor fungal colonization in grapes, Int. J. Food Microbiol., 2011, vol. 148, no. 2, pp. 135–140.PubMedCrossRefGoogle Scholar
- 127.Mora-Lugo, R., Zimmermann, J., Rizk, A.M., and Fernandez-Lahore, M., Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach, BMC Microbiol., 2014, vol. 14, p. 247.PubMedPubMedCentralCrossRefGoogle Scholar
- 128.Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J., Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination, Nat. Biotechnol., 1999, vol. 17, no. 6, pp. 598–601.PubMedCrossRefGoogle Scholar
- 129.Cardoza, R.L., Vizcaino, J.A., Hermosa, M.R., Monte, E., and Gutierrez, S., A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast-and Agrobacterium-mediated transformation, J. Microbiol., 2006, vol. 44, no. 4, pp. 383–395.PubMedGoogle Scholar
- 130.Michielse, C.B., Ram, A.F., Hooykaas, P.J., and Hodel, C.A., Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori, Fungal Genet. Biol., 2004, vol. 41, no. 5, pp. 571–578.PubMedCrossRefGoogle Scholar
- 131.Mullins, E., Romaine, C.P., Chen, X., Geiser, D., Raina, R., and Kang, S., Agrobacterium tumefaciensmediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer, Phytopathology, 2001, vol. 91, no. 2, pp. 173–180.PubMedCrossRefGoogle Scholar
- 132.Ruiz-Diez, B., Strategies for the transformation of filamentous fungi, J. Appl. Microbiol., 2002, vol. 92, no. 2, pp. 189–195.PubMedCrossRefGoogle Scholar
- 133.Mikosch, T.S., Lavrijssen, B., Sonnenberg, A.S., and van Griensven, L.J., Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens, Curr. Genet., 2001, vol. 39, no. 1, pp. 35–39.PubMedCrossRefGoogle Scholar
- 134.Wang, K., Methods in Molecular Biology, New York: Humana Press, 2006, vol. 344, pp. 395–475.Google Scholar
- 135.Wang, J., Guo, L., Zhang, K., Wu, Q., and Lin, J., Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea, Bioresour. Technol., 2008, vol. 99, no. 17, pp. 8524–8527.PubMedCrossRefGoogle Scholar
- 136.Sun, W., Liu, L., Hu, X., Tang, J., Liu, P., Chen, J., and Chen, Y., Generation and identification of DNA sequence flanking T-DNA integration site of Trichoderma atroviride mutants with high dichlorvos-degrading capacity, Bioresour. Technol., 2009, vol. 100, no. 23, pp. 5941–5946.PubMedCrossRefGoogle Scholar
- 137.Duarte, R.T., Staats, C.C., Fungaro, M.H., Schrank, A., Vainsten, M.H., Furlaneto-Maia, L., Nakamura, C.V., de Souza, W., and Furlaneto, M.C., Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum, Lett. Appl. Microbiol., 2007, vol. 44, no. 3, pp. 248–254.PubMedCrossRefGoogle Scholar
- 138.Rho, H., Kang, S., and Lee, Y., Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Magnaporthe grisea, Mol. Cells, 2001, vol. 12, no. 3, pp. 407–411.PubMedGoogle Scholar
- 139.Dobinson, K.F., Grant, S.J., and Kang, S., Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahlia, Curr. Genet., 2004, vol. 45, no. 2, pp. 104–110.PubMedCrossRefGoogle Scholar
- 140.Zwiers, L.-H. and De Waard, M.A., Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola, Curr. Genet., 2001, vol. 39, nos. 5–6, pp. 388–393.PubMedCrossRefGoogle Scholar
- 141.Bundock, P., Mroczek, K., Winkler, A.A., Steensma, H.Y., and Hooykaas, P.J., T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis, Mol. Gen. Genet., 1999, vol. 261, no. 1, pp. 115–121.PubMedCrossRefGoogle Scholar
- 142.Sullivan, T.D., Rooney, P.J., and Klein, B.S., Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast, Eukaryot. Cell, 2002, vol. 1, no. 6, pp. 895–905.PubMedPubMedCentralCrossRefGoogle Scholar
- 143.Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C.P., A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus, Appl. Environ. Microbiol., 2000, vol. 66, no. 10, pp. 4510–4513.PubMedPubMedCentralCrossRefGoogle Scholar
- 144.Lu, Z., Kong, X., Lu, Z., Xiao, M., Chen, M., Zhu, L., Shen, Y., Hu, X., and Song, S., Paraaminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus, PLoS One, 2014, vol. 9, no. 3, p. e91298.PubMedPubMedCentralCrossRefGoogle Scholar
- 145.Zheng, Z., Huang, C., Cao, L., Xie, C., and Han, R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris, Fungal Biol., 2011, vol. 115, no. 3, pp. 265–274.PubMedCrossRefGoogle Scholar
- 146.Cho, J.H., Lee, S.E., Chang, W.B., and Cha, J.S., Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes, Mycobiology, 2006, vol. 34, no. 2, pp. 104–107.PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Park, S.Y., van Peer, A.F., Jang, K.Y., Shin, P.G., Park, Y., Yoo, Y.B., Park, K.M., and Kong, W.S., Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes, Korean J. Mycol., 2010, vol. 38, no. 1, pp. 48–53.CrossRefGoogle Scholar
- 148.Okamoto, T., Yamada, M., Sekiya, S., Okuhara, T., Taguchi, G., Inatomi, S., and Shimosaka, M., Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes, Biosci. Biotechnol. Biochem., 2010, vol. 74, no. 11, pp. 2327–2329.PubMedCrossRefGoogle Scholar
- 149.Shi, L., Fang, X., Li, M., Mu, D., Ren, A., Tan, Q., and Zhao, M., Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum, J. Microbiol. Biotechnol., 2012, vol. 28, no. 1, pp. 283–291.CrossRefGoogle Scholar
- 150.Hatoh, K., Izumitsu, K., Morita, A., Shimizu, K., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., and Tanaka, C., Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid, Mycoscience, 2013, vol. 54, no. 1, pp. 8–12.CrossRefGoogle Scholar
- 151.Zhang, J.J., Shi, L., Chen, H., Sun, Y.Q., Zhao, M.W., Ren, A., Chen, M.J., Wang, H., and Feng, Z.Y., An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus, Microbiol. Res., 2014, vol. 169, nos 9-10, pp. 741–748.PubMedCrossRefGoogle Scholar
- 152.Zubieta, M.P., Silva, CoelhoI., de Queiroz, M.V., and de Araujo, E.F., Agrobacterium tumefaciens-mediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata, Ann. Microbiol., 2014, vol. 64, no. 4, pp. 1875–1878.CrossRefGoogle Scholar
- 153.Chung, S.J., Kim, S., Sapkota, K., Choi, B.S., Shin, C., and Kim, S.J., Expression of recombinant human interleukin-32 in Pleurotus eryngii, Ann. Microbiol., 2011, vol. 61, no. 2, pp. 331–338.CrossRefGoogle Scholar
- 154.Kim, K.H., Kang, Y.M., Im, C.H., Ali, A., Kim, S.Y., Je, H.J., Kim, M.K., Rho, H.S., Lee, H.S., Kong, W.S., and Ryu, J.S., Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii, PLoS One, 2014, vol. 9, no. 8, p. e104693.PubMedPubMedCentralCrossRefGoogle Scholar
- 155.Ding, Y., Liang, S., Lei, J., Chen, L., Kothe, E., and Ma, A., Agrobacterium tumefaciens-mediated fused egfp–hph gene expression under the control of gpd promoter in Pleurotus ostreatus, Microbiol. Res., 2011, vol. 166, no. 4, pp. 314–322.PubMedCrossRefGoogle Scholar
- 156.Pardo, A.G., Hanif, M., Raudaskoski, M., and Gorfer, M., Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens, Mycol. Res., 2002, vol. 106, no. 2, pp. 132–137.CrossRefGoogle Scholar
- 157.Godio, R.P., Fouces, R., Gudina, E.J., and Martin, J.F., Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium, Curr. Genet., 2004, vol. 46, no. 5, pp. 287–294.PubMedCrossRefGoogle Scholar
- 158.Murata, H., Igasaki, T., Shishido, K., and Sunagawa, M., Agrobacterium-mediated transformation of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces commercially valuable fruit bodies, matsutake, Mycoscience, 2006, vol. 47, no. 4, pp. 228–231.CrossRefGoogle Scholar
- 159.Murata, H., Sunagawa, M., Yamada, T., Shishido, K., and Igasaki, T., Expression of the autofluorescent protein, DsRed2, in the recombinants of the ectomycorrhizal basidiomycete, Suillus grevillei, generated by Agrobacterium mediated transformation, Mycorrhiza, 2006, vol. 16, no. 6, pp. 407–412.PubMedCrossRefGoogle Scholar
- 160.Kim, S., Ha, B.-S., and Ro, H.-S., Current technologies and related issues for mushroom transformation, Mycobiology, 2015, vol. 43, no. 1, pp. 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 161.Challen, M., Gregorg, K., Sreenivasaprasad, S., Rogers, C.C., Cutler, S.B., Diaper, D.C., Elliott, T.J., and Foster, G.D., Transformation technologies for mushrooms, Mushroom Sci., 2000, vol. 15, pp. 165–172.Google Scholar
- 162.Leach, K., Odon, V., Zhang, C., Kim, H.K., Henderson, J., Warner, P., Challen, M., and Elliott, T., Progress in Agaricus bisporus transformation: Agrobacterium methodologies and development of novel marker genes, Mushroom Sci., 2004, vol. 16, pp. 93–102.Google Scholar
- 163.Romaine, C.P. and Schlagnhaufer, C., Mushroom (Agaricus bisporus), in Agrobacterium Protocols, Totowa, New Jersey: Humana Press, 2006, vol. 2, pp. 453–463.Google Scholar
- 164.Ando, A., Sumida, Y., Negoro, H., Suroto, D.A., Ogawa, J., Sakuradani, E., and Shimizu, S., Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding, Appl. Environ. Microbiol., 2009, vol. 75, no. 17, pp. 5529–5535.PubMedPubMedCentralCrossRefGoogle Scholar
- 165.Chen, E.C., Su, Y.H., Kanagarajan, S., Agrawal, D.C., and Tsay, H.S., Development of an activation tagging system for the basidiomycetous medicinal fungus Antrodia cinnamomea, Mycol. Res., 2009, vol. 113, pp. 290–297.PubMedCrossRefGoogle Scholar
- 166.Covert, S.F., Kapoor, P., Lee, M.-H., Briley, A., and Nairn, C.J., Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum, Mycol. Res., 2001, vol. 105, no. 3, pp. 259–264.CrossRefGoogle Scholar
- 167.Combier, J.P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum, FEMS Microbiol. Letts., 2003, vol. 220, no. 1, pp. 141–148.CrossRefGoogle Scholar
- 168.Stachel, S.E., Nester, E.W., and Zambryski, P.C., A plant cell factor induces Agrobacterium tumefaciens vir gene expression, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, no. 2.Google Scholar
- 169.Reis, M.C., Pelegrinelli Fungaro, M.H., Delgado Duarte, R.T., Furlaneto, L., and Furlaneto, M.C., Agrobacterium tumefaciens mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana, J. Microbiol. Methods, 2004, vol. 58, no. 2, pp. 197–202.PubMedCrossRefGoogle Scholar
- 170.Michielse, C.B., Hooykaas, P.J., Hondel, C.A., and Ram, A.F., Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori, Nature Prot., 2008, vol. 3, no. 10, pp. 1671–1678.CrossRefGoogle Scholar
- 171.Kostetsky, I.E. and Kordyum, V.A., Liposome-mediated delivery of DNA to Saccharomyces cerevisiae protoplasts, Biopolym. Cell, 1987, vol. 3, no. 1, pp. 35–40.CrossRefGoogle Scholar
- 172.Ain, Q.U., Chung, J.Y., and Kim, Y.H., Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN, J. Control. Release, 2015, vol. 205, pp. 120–127.CrossRefGoogle Scholar
- 173.Doudna, J.F. and Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9, Science, 2014, vol. 346, no. 6213, art. 1258096.Google Scholar
- 174.Carroll, D., Genome engineering with targetable nucleases, Annu. Rev. Biochem., 2014, vol. 83, pp. 409–439.PubMedCrossRefGoogle Scholar
- 175.DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., and Church, G.M., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 2013, vol. 41, no. 7, pp. 4336–4343.PubMedPubMedCentralCrossRefGoogle Scholar
- 176.Arazoe, T., Miyoshi, K., Yamato, T., Ogawa, T., Ohsato, S., Arie, T., and Kuwata, S., Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus, Biotechnol. Bioeng., 2015, vol. 112, no. 12, pp. 2543–2549.PubMedCrossRefGoogle Scholar
- 177.Katayama, T., Tanaka, Y., Okabe, T., Nakamura, H., Fujii, W., Kitamoto, K., and Maruyama, J., Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae, Biotechnol. Lett., 2016, vol. 38, no. 4, pp. 637–642.PubMedCrossRefGoogle Scholar
- 178.Liu, R., Chen, L., Jiang, Y., Zhou, Z., and Zou, G., Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system, Cell Discov., 2015, vol. 1, Art. 15007.Google Scholar
- 179.Nødvig, C.S., Nielsen, J.B., Kogle, M.E., and Mortensen, U.H., A CRISPR/Cas9 system for genetic engineering of filamentous fungi, PLoS One, 2015, vol. 10, no. 7.CrossRefGoogle Scholar
- 180.Fuller, K., Chen, S., Loros, J.J., and Dunlap, J.C., Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigates, Eukaryot. Cell, 2015, vol. 14, no. 11, pp. 1073–1080.PubMedPubMedCentralCrossRefGoogle Scholar
- 181.Matsuura, T., Baek, M., Kwon, J., and Hong, C., Efficient gene editing in Neurospora crassa with CRISPR technology, Fungal Biol. Biotechnol., 2015, vol. 2, Art. 4.Google Scholar
- 182.Pohl, C., Kiel, J.A., Driessen, A.J., Bovenberg, R.A., and Nygard, Y., CRISPR/Cas9 based genome editing of Penicillium chrysogenum, ACS Synth. Biol., 2016, vol. 5, no. 7, pp. 754–764.PubMedCrossRefGoogle Scholar
- 183.Schuster, M., Schweizer, G., Reissmann, S., and Kahmann, R., Genome editing in Ustilago maydis using the Crispr–Cas system, Fungal Genet. Biol., 2016, vol. 89, pp. 3–9.PubMedCrossRefGoogle Scholar
- 184.Goldman, G.H., van Montagu, M., and Herrera-Estrella, A., Filamentous fungi, in Transformation of Plants and Soil Microorganisms, New York, Cambridge: Univ. Press, 1995, pp. 34–49.CrossRefGoogle Scholar
- 185.Stahl, U., Tudzynski, P., Kück, U., and Esser, K., Replication and expression of a bacterial-mitochondrial hybrid plasmid in the fungus Podospora anserine, Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, no. 11, pp. 3641–3645.PubMedPubMedCentralCrossRefGoogle Scholar
- 186.Stohl, L.L. and Lambowitz, A.M., Construction of a shuttle vector for the filamentous fungus Neurospora crassa, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, no. 4, pp. 1058–1062.PubMedPubMedCentralCrossRefGoogle Scholar
- 187.Esser, K., Kuck, U., Stahl, U., and Tudzynski, P., Cloning vectors of mitochondrial origin for eukaryotes: a new concept in genetic engineering, Curr. Genet., 1983, vol. 7, no. 4, pp. 239–243.PubMedCrossRefGoogle Scholar
- 188.Balance, D.J. and Turner, G., Development of a high frequency transforming vector for Aspergillus nidulans, Gene, 1985, vol. 36, no. 3, pp. 321–331.CrossRefGoogle Scholar
- 189.Tusukuda, T., Carleton, S., Fotheringham, S., and Holloman, W.K., Isolation and characterization of an autonomously replicating sequence from Ustilago maydis, Mol. Cell. Biol., 1988, vol. 8, no. 9, pp. 3703–3709.CrossRefGoogle Scholar
- 190.Van Heeswijck, R., Autonomous replication of plasmids in Mucor transformants, Carlsber Res. Commun., 1986, vol. 51, no. 6, pp. 433–443.CrossRefGoogle Scholar
- 191.Roncero, M.I.G., Jepsen, L.P., Stroman, P., and van Heeswijck, R., Characterization of a leuA gene and an ARS element from Mucor circinelloides, Gene, 1989, vol. 84, no. 2, pp. 335–343.PubMedCrossRefGoogle Scholar
- 192.Fierro, F., Kosalkova, K., Gutierrez, S., and Martin, J.F., Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum, Curr. Genet., 1996, vol. 29, no. 5, pp. 482–489.PubMedCrossRefGoogle Scholar
- 193.Bowyer, P., Osbourn, A.E., and Daniels, M.J., An “instant gene bank” method for heterologous gene cloning: complementation of two Aspergillus nidulans mutants with Gaeumannomyces graminis DNA, Mol. Gen. Genet., 1994, vol. 242, no. 4, pp. 448–454.PubMedGoogle Scholar
- 194.Powell, W.A. and Kistler, H.C., In vivo rearrangement of foreign DNA by Fusarium oxysporum produces lineal self-replicating plasmids, J. Bacteriol., 1990, vol. 172, no. 6, pp. 3163–3171.PubMedPubMedCentralCrossRefGoogle Scholar
- 195.Long, D.M., Smidansky, E.D., Archer, A.J., and Strobel, G.A., In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspore, Fungal Genet. Biol., 1998, vol. 24, no. 3, pp. 335–344.PubMedCrossRefGoogle Scholar
- 196.Selker, E.U., Cambareri, E.B., Jensen, B.C., and Haak, K.R., Rearrangement of duplicated DNA in specialized cells of Neurospora, Cell, 1987, vol. 51, no. 5, pp. 741–752.PubMedCrossRefGoogle Scholar
- 197.Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., and Davies, R.W., Transformation by integration in Aspergillus nidulans, Gene, 1983, vol. 26, nos. 2–3, pp. 205–221.PubMedCrossRefGoogle Scholar
- 198.Suzuki, K., Imai, Y., Yamashita, I., and Fukui, S., In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae, J. Bacteriol., 1983, vol. 155, no. 2, pp. 747–754.PubMedPubMedCentralGoogle Scholar
- 199.Wang, J., Holden, D.W., and Leong, S.A., Gene transfer system for the phytopathogenic fungus Ustilago maydis, Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, no. 3, pp. 865–869.PubMedPubMedCentralCrossRefGoogle Scholar
- 200.Huiet, L. and Case, M., Molecular biology of the qa gene cluster in Neurospora crassa, in Gene Manipulations in Fungi, Bennett, J.W. and Lasure, L.L., Eds., Orlando, FL: Acad. Press, 1985, pp. 229–244.CrossRefGoogle Scholar
- 201.Boylan, M.T., Mirabito, P.M., Wilett, C.E., Zimmerman, C.R., and Timberlake, W.E., Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans, Mol. Cell. Biol., 1987, vol. 7, no. 9, pp. 3113–3118.PubMedPubMedCentralCrossRefGoogle Scholar
- 202.Aramayo, R., Adams, T.H., and Timberlake, W.E., A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans, Genetics, 1989, vol. 122, no. 1, pp. 65–71.PubMedPubMedCentralGoogle Scholar
- 203.Ballinger, D.G. and Benzer, S., Targeted gene mutations in Drosophila, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, no. 23, pp. 9402–9406.PubMedPubMedCentralCrossRefGoogle Scholar
- 204.Li, Nestri., Nicosia, M.G., Brocard-Masson, C., Demais, S., Hua, Van A., Daboussi, M.J., and Scazzochio, C., Heterologous transposition in Aspergillus nidulans, Mol. Microbiol., 2001, vol. 39, no. 5, pp. 1330–1344.CrossRefGoogle Scholar
- 205.Dmytruk, K.V. and Sibirny, A.A., Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi, Genetika, 2007, vol. 43, no. 8, pp. 1013–1025.Google Scholar
- 206.DeBacker, M.D., Nelissen, B., Logghe, M., Viaene, J., Loonen, I., Vandoninck, S., de Hoogt, R., Dewaele, S., Simons, F.A., Verhasselt, P., Vanhoof, G., Contreras, R., and Luyten, W.H., An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans, Nat. Biotechnol., 2001, vol. 19, no. 3, pp. 235–241.CrossRefGoogle Scholar
- 207.Gorlach, J.M., McDade, H.C., Perfect, J.R., and Cox, G.M., Antisense repression in Cryptoccocus neoformans as a laboratory tool and potential antifungal strategy, Microbiology, 2002, vol. 148, no. 1, pp. 213–219.PubMedCrossRefGoogle Scholar
- 208.Bautista, L.F., Aleksenko, A., Hentzer, M., Santerre-Henriksen, A., and Nielsen, J., Antisense silencing of the creA gene in Aspergillus nidulans, Appl. Environ. Microbiol., 2000, vol. 66, no. 10, pp. 4579–4581.PubMedPubMedCentralCrossRefGoogle Scholar
- 209.Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, vol. 391, no. 6669, pp. 806–811.PubMedCrossRefGoogle Scholar
- 210.Liu, H., Cottrell, T.R., Pierini, L.M., Goldman, W.E., and Doering, T.L., RNA interference in the pathogenic fungus Cryptoccocus neoformans, Genetics, 2002, vol. 160, no. 2, pp. 463–470.PubMedPubMedCentralGoogle Scholar
- 211.Casadaban, M.J. and Cohen, S.N., Lactose genes fused to exogenous promoters in one step using a Mulac bacteriophage: in vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 9, pp. 4530–4533.PubMedPubMedCentralCrossRefGoogle Scholar
- 212.Ilmen, M., Onnela, M.L., Klemsdal, S., Keranen, S., and Penttila, M., Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei, Mol. Gen. Genet., 1996, vol. 253, no. 3, pp. 303–314.PubMedGoogle Scholar
- 213.Hynes, M.J., Draht, O.W., and Davis, M.A., Regulation of the acuF gene, encoding phosphoenol pyruvate carboxyl kinase in the filamentous fungus Aspergillus nidulans, J. Bacteriol., 2002, vol. 184, no. 1, pp. 183–190.PubMedPubMedCentralCrossRefGoogle Scholar
- 214.Roberts, I.N., Oliver, R.P., Punt, J.P., and Hondel, C.A., Expression of the Escherichia coli beta-glucuronidase gene in industrial and phytopathogenic filamentous fungi, Curr. Genet., 1989, vol. 15, no. 3, pp. 177–180.PubMedCrossRefGoogle Scholar
- 215.Snoeijers, S.S., Vossen, P., Goosen, T., Broek, H.W., and De Witt, P.J., Transcription of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by a GATA-type transcription factor in Aspergillus nidulans, Mol. Gen. Genet., 1999, vol. 261, nos. 4–5, pp. 653–659.PubMedCrossRefGoogle Scholar
- 216.Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S., Zeilinger, S., Kullning, C.M., Lorito, M., and Kubicek, C., Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals, Appl. Environ. Microbiol., 1999, vol. 65, no. 5, pp. 1858–1863.PubMedPubMedCentralGoogle Scholar
- 217.Harkki, A., Uusitalo, J., Bailey, M., Pentilla, M., and Knowles, J.K.C., A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei, Nature Biotechnol., 1989, vol. 7, no. 6, pp. 596–603.CrossRefGoogle Scholar
- 218.Penalva, M.A., Rowlands, R.T., and Turner, G., The optimization of penicillin biosynthesis in fungi, Trends Biotechnol., 1998, vol. 16, no. 11, pp. 483–489.PubMedCrossRefGoogle Scholar
- 219.Orejas, M., Tamayo, E.N., Villanueva, A., and Ramon, D.J., Improving extracellular production of food-use enzymes from Aspergillus nidulans, Biotechnology, 2002, vol. 96, no. 1, pp. 43–54.Google Scholar
- 220.Holz, C., Hesse, O., Bolotina, N., Stahl, U., and Lang, C., A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae, Protein Exp. Purif., 2002, vol. 25, no. 3, pp. 372–378.CrossRefGoogle Scholar
- 221.Punt, P.J., van Biezen, N., Conesa, A., Albers, A., Magnus, J., and Hondel, C., Filamentous fungi as cell factories for heterologous protein production, Trends Biotechnol., 2002, vol. 20, no. 5, pp. 200–206.PubMedCrossRefGoogle Scholar
Copyright information
© Allerton Press, Inc. 2018