Cytology and Genetics

, Volume 52, Issue 2, pp 139–154 | Cite as

Advances, Problems, and Prospects of Genetic Transformation of Fungi

  • N. L. Poyedinok
  • Ya. B. Blume


Advances, problems, and prospects of genetic transformation of fungi are described. Features distinguishing fungi from other organisms are analyzed. Those features should be taken into consideration while preparing genetic material for transformation. The ways to overcome problems associated with hyphae apical growth, cell wall thickness, the heterokaryotic life cycle stage, and mechanisms of immune defense are described. A comparative analysis of major methods for transformation of fungi at different stages of their life cycle was performed. Stability of genetically modified fungi and advances in transformation are discussed.


fungi genetic transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mishra, N.C. and Tatum, E.L., Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, no. 12, pp. 3875–3879.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hinnen, A., Hicks, J.B., and Fink, G.R., Transformation of yeast, Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, no. 4, pp. 1929–1923.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Nevalainen, H. and Peterson, R., Making recombinant proteins in filamentous fungi: are we expecting too much?, Front. Microbiol., 2014, vol. 5, no. 75, pp. 1–10.Google Scholar
  4. 4.
    Su, X., Schmitz, G., Zhang, M., Mackie, R.I., and Cann, I.K., Heterologous gene expression in filamentous fungi, Adv. Appl. Microbiol., 2012, vol. 81, no. 1, pp. 1–61.PubMedGoogle Scholar
  5. 5.
    El Enshasy, H.A. and Hatti-Kaul, R., Mushroom immunomodulators: unique molecules with unlimited applications, Trend Biotechnol., 2013, vol. 31, no. 12, pp. 668–677.CrossRefGoogle Scholar
  6. 6.
    Wasser, S.P., Medicinal mushroom science: current perspectives, advances, evidences, and challenges, Biomed. J., 2014, vol. 37, no. 6, pp. 345–356.PubMedCrossRefGoogle Scholar
  7. 7.
    Singh, S.S., Wang, H., Chan, Y.S., Pan, W., Dan, X., Yin, C.M., Akkouh, O., and Ng, T.B., Lectins from edible mushrooms, Molecules, 2014, vol. 20, no. 1, pp. 446–469.PubMedCrossRefGoogle Scholar
  8. 8.
    Wösten, H.A. and Scholtmeijer, K., Applications of hydrophobins: current state and perspectives, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 4, pp. 1587–1597.PubMedCrossRefGoogle Scholar
  9. 9.
    Howard, R.J., Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution, J. Cell Sci., 1981, vol. 48, no. 1, pp. 89–103.PubMedGoogle Scholar
  10. 10.
    Bauer, R., Mendgen, K., and Oberwinkler, F., Septal pore apparatus of the smut Ustacystis waldsteiniae, Mycologia, 1995, vol. 87, no. 1, pp. 18–24.CrossRefGoogle Scholar
  11. 11.
    Shepherd, V.A., Orlovich, D.A., and Ashford, A.E., Cell-to-cell transport via motile tubules in growing hyphae of a fungus, J. Cell Sci., 1993, vol. 105, no. 4, pp. 1173–1178.PubMedGoogle Scholar
  12. 12.
    Farrag, R.M., Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt, Pol. J. Microbiol., 2009, vol. 58, no. 4, pp. 327–338.PubMedGoogle Scholar
  13. 13.
    Muller, W.H., van Aelst, A.C., van der Krift, T.P., and Boekhout, T., Scanning electron microscopy of the septal pore cap of the basidiomycete Schizophyllum commune, Can. J. Microbiol., 1994, vol. 40, no. 10, pp. 879–883.CrossRefGoogle Scholar
  14. 14.
    Selitrennikoff, C.P., Antifungal proteins, Appl. Environ. Microbiol., 2001, vol. 67, no. 7, pp. 2883–2894.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hofsten, B. and Hofsten, A., Ultrastructure of a thermotolerant basidiomycete possibly suitable for production of food protein, Appl. Microbiol., 1974, vol. 27, no. 6, pp. 1142–1148.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Nieuwenhuis, B.P., Debets, A.J., and Aanen, D.K., Sexual selection in mushroom-forming basidiomycetes, Proc. Biol. Sci., 2011, vol. 278, no. 1702, pp. 152–157.PubMedCrossRefGoogle Scholar
  17. 17.
    Kothe, E., Mating-type genes for basidiomycete strain improvement in mushroom farming, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 5–6, pp. 602–612.PubMedCrossRefGoogle Scholar
  18. 18.
    Griffiths, A.J., Natural plasmids of filamentous fungi, Microbiol. Rev., 1995, vol. 59, no. 4, pp. 673–685.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gems, D., Johnstone, I.L., and Clutterbuck, A.J., An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency, Gene, 1991, vol. 98, no. 1, pp. 61–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoberle, T.J., Nguyen-Coleman, C.K., and May, G.S., Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi, Fungal Genet. Biol., 2013, vol. 58-59, no. 1, pp. 1–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Alani, E., Cao, L., and Kleckner, N., A method for gene disruption that allows repeated use of ura3 selection in the construction of multiply disrupted yeast strains, Genetics, 1987, vol. 116, no. 4, pp. 541–545.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rothstein, R.J., One-step gene disruption in yeast, Methods Enzymol., 1983, vol. 101, pp. 202–211.PubMedCrossRefGoogle Scholar
  23. 23.
    Enfert, C., Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5’-decarboxilase gene, pyrG, as a unique transformation marker, Curr. Genet., 1996, vol. 30, no. 1, pp. 76–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Daboussi, M.J., Djeballi, A., Gerlinger, C., Blaiseau, P.L., Bouvier, I., Cassan, M., Lebrun, M.H., Parisot, D., and Brygoo, Y., Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans, Curr. Genet., 1989, vol. 15, no. 6, pp. 453–456.PubMedCrossRefGoogle Scholar
  25. 25.
    Bouxton, F.P., Gwynne, D.I., and Davies, R.W., Cloning of a new bidirectionally selectable marker for Aspergillus strain, Gene, 1989, vol. 84, no. 2, pp. 329–334.CrossRefGoogle Scholar
  26. 26.
    Hynes, M.J. and Pateman, J.A., The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. 2. Mutants resistant to fluoroacetamide, Mol. Gen. Genet., 1970, vol. 108, no. 2, pp. 107–116.PubMedCrossRefGoogle Scholar
  27. 27.
    Debets, A.J., Swart, K., Holub, E.F., Goosen, T., and Bos, C.J., Genetic analysis of amdS transformants of Aspergillus niger and their use in chromosome mapping, Mol. Gen. Genet., 1990, vol. 222, nos. 2–3, pp. 284–290.PubMedCrossRefGoogle Scholar
  28. 28.
    Gouka, R.J., van Hartingsveldt, W., Bovenberg, R.A., van Zegil, C.M., Hondel, C.A., and van Gorcom, R.F., Development of a new transformant selection system for Penicillium crysogenum: isolation and characterization of the P. crysogenum acetyl-coenzime A synthetase gene (facA) and its use as a homologous selection marker, Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 4, pp. 514–519.PubMedCrossRefGoogle Scholar
  29. 29.
    Burns, C., Gregory, K.E., Kirby, M., Cheung, M.K., Riquelme, M., Elliott, T.J., Challen, M.P., Bailey, A., and Foster, G.D., Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns, Fungal Genet. Biol., 2005, vol. 42, no. 3, pp. 191–199.PubMedCrossRefGoogle Scholar
  30. 30.
    Heneghan, M.N., Porta, C., Zhang, C., Burton, K.S., Challen, M.P., Bailey, A.M., and Foster, G.D., Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter, Appl. Environ. Microbiol., 2009, vol. 75, no. 3, pp. 792–801.PubMedCrossRefGoogle Scholar
  31. 31.
    Binninger, D.M., Skrzynia, C., Pukkila, P.J., and Casselton, L.A., DNA-mediated transformation of the basidiomycete Coprinus cinereus, EMBO J., 1987, vol. 6, no. 4, pp. 835–840.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Tilby, M.J., Tryptophan biosynthesis in Coprinus lagopus: a genetic analysis of mutants, J. Gen. Microbiol., 1976, vol. 93, no. 1, pp. 126–132.PubMedCrossRefGoogle Scholar
  33. 33.
    Kiguchi, T. and Yanagi, S.O., Intraspecific heterokaryon and fruit body formation in Coprinus macrorhizus by protoplast fusion of auxotrophic mutants, Appl. Microbiol. Biotechnol., 1985, vol. 22, no. 2, pp. 121–127.CrossRefGoogle Scholar
  34. 34.
    Yanai, K., Yonekura, K., Usami, H., Hirayama, M., Kajiwara, S., Yamazaki, T., Shishido, K., and Adachi, T., The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 3, pp. 472–475.PubMedCrossRefGoogle Scholar
  35. 35.
    Randall, T. and Reddy, C.A., An improved transformation vector for the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium, Gene, 1991, vol. 103, no. 1, pp. 125–130.PubMedCrossRefGoogle Scholar
  36. 36.
    Punt, P.J., Oliver, R.P., Digemanse, M.A., Pouwels, P.H., and Hondel, C.A., Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli, Gene, 1987, vol. 56, no. 1, pp. 117–124.PubMedCrossRefGoogle Scholar
  37. 37.
    Leung, H., Lethtinen, U., Karjelainen, R., Skinner, D., Tooley, P., Leong, S., and Ellingboe, A., Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance, Curr. Genet., 1990, vol. 17, no. 5, pp. 409–411.PubMedCrossRefGoogle Scholar
  38. 38.
    Tunlid, A., Ahman, J., and Oliver, R.P., Transformation of the nematode-trapping fungus Arthrobotrys oligospora, FEMS Microbiol. Letts., 1999, vol. 173, no. 1, pp. 111–116.CrossRefGoogle Scholar
  39. 39.
    Herrera-Estrella, A., Goldman, G.H., and van Montagu, M., High-efficiency transformation system for the biocontrol agents, Trichoderma spp, Mol. Microbiol., 1990, vol. 4, no. 5, pp. 839–843.PubMedCrossRefGoogle Scholar
  40. 40.
    Degefu, Y. and Hanif, M., Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus, Arch. Microbiol., 2003, vol. 180, no. 4, pp. 279–284.PubMedCrossRefGoogle Scholar
  41. 41.
    Orbach, M.S., Porro, E.B., and Yanafsky, C., Cloning and characterization of the gene of β-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker, Mol. Cell. Biol., 1986, vol. 6, no. 7, pp. 2452–2461.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Goldman, G.H., Temmerman, W., Jacobs, D., Contreras, R., van Montagu, M., and Herrera-Estrella, A., A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antibiotic drug methyl benzimidazole-2-yl-carbamate, Mol. Gen. Genet., 1993, vol. 240, no. 1, pp. 73–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Gold, S.E., Bakkeren, G., Davies, J.E., and Kronstand, J.W., Three selectable markers for transformation of Ustilago maydis, Gene, 1994, vol. 142, no. 2, pp. 225–230.PubMedCrossRefGoogle Scholar
  44. 44.
    Ward, M., Wilson, L.J., Carmona, C.L., and Turner, G., The oliC3 gene of Aspergillus niger: isolation, sequence and use as a selectable marker for transformation, Curr. Genet., 1988, vol. 14, no. 1, pp. 37–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Bull, J.H., Smith, D.J., and Turner, G., Transformation of Penicillium chrysogenum with a dominant selectable marker, Curr. Genet., 1988, vol. 13, no. 5, pp. 377–382.PubMedCrossRefGoogle Scholar
  46. 46.
    Austin, B., Hall, R.M., and Tyler, B.M., Optimized vectors and selection for transformation of Neurospora crassa and Aspergillus nidulans to bleomycin and phleomycin resistance, Gene, 1990, vol. 93, no. 1, pp. 157–162.PubMedCrossRefGoogle Scholar
  47. 47.
    Kolar, M., Punt, P.J., Hondel, C.A., and Schwab, H., Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene, Gene, 1988, vol. 62, no. 1, pp. 127–134.PubMedCrossRefGoogle Scholar
  48. 48.
    Carramolino, L., Lozano, M., Perez-Aranda, A., Rubio, V., and Sánchez, F., Transformation of Penicillium chrysogenum to sulfonamide resistance, Gene, 1989, vol. 77, no. 1, pp. 31–38.PubMedCrossRefGoogle Scholar
  49. 49.
    Inglis, P.W., Biolistic co-transformation of Metarhizium anisopliae var. acridum strain CG423 with green fluorescent protein and resistance to glucosinate ammonium, FEMS Microbiol. Letts., 2000, vol. 191, no. 2, pp. 249–254.CrossRefGoogle Scholar
  50. 50.
    Avalos, J., Geever, R.F., and Case, M.E., Bialaphos resistance as a dominant selectable marker in Neurospora crassa, Curr. Genet., 1989, vol. 16, nos. 5–6, pp. 369–372.PubMedCrossRefGoogle Scholar
  51. 51.
    Keon, J.P., White, G.A., and Hargreaves, J.A., Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis, Curr. Genet., 1991, vol. 19, no. 6, pp. 475–481.PubMedCrossRefGoogle Scholar
  52. 52.
    Fernández-Ábalos, J.M., Fox, H., Pitt, C., Well, B., and Doonan, J.H., Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans, Mol. Microbiol., 1998, vol. 27, no. 1, pp. 121–130.PubMedCrossRefGoogle Scholar
  53. 53.
    Spellig, T., Bottin, A., and Kahmann, R., Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis, Mol. Gen. Genet., 1996, vol. 252, no. 5, pp. 503–509.PubMedGoogle Scholar
  54. 54.
    Cormack, B.P., Bertram, G., Egerton, M., Gow, N.A., Falkow, S., and Brown, A.J., Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans, Microbiology, 1997, vol. 143, no. 2, pp. 303–311.PubMedCrossRefGoogle Scholar
  55. 55.
    Olmedo-Monfil, V., Mendoza-Mendoza, A., Gomez, I., Cortes, C., and Herrera-Estrella, A., Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride, Mol. Genet. Genom., 2002, vol. 267, no. 6, pp. 703–712.CrossRefGoogle Scholar
  56. 56.
    Olmedo-Monfil, V., Cortés-Penagos, C., and Herrera- Estrella, A., Three decades of fungal transformation: key concepts and applications, Methods Mol. Biol., 2004, vol. 267, pp. 297–313.PubMedGoogle Scholar
  57. 57.
    Lee, K. and Lee, S.E., Saccharomyces cerevisiae Sae2-and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining, Genetics, 2007, vol. 176, no. 4, pp. 2003–2014.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mezard, C. and Nicolas, A., Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae, Mol. Cell Biol., 1994, vol. 14, no. 2, pp. 1278–1292.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Symington, L.S. and Gautier, J., Double-strand break end resection and repair pathway choice, Ann. Rev. Genet., 2011, vol. 45, pp. 247–271.PubMedCrossRefGoogle Scholar
  60. 60.
    Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J., Yeast transformation: a model system for the study of recombination, Proc. Natl. Acad. Sci. U. S. A., 1981, vol. 78, no. 10, pp. 6354–6358.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ishibashi, K., Suzuki, K., Ando, Y., Takakura, C., and Inoue, H., Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 40, pp. 14871–14876.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H., Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 33, pp. 12248–12253.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nakazawa, T., Ando, Y., Kitaaki, K., Nakahori, K., and Kamada, T., Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea, Fungal Genet. Biol., 2011, vol. 48, no. 10, pp. 939–946.PubMedCrossRefGoogle Scholar
  64. 64.
    Leem, Y.E., Kim, S.J., Ross, I.K., and Choi, H.T., Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration, FEMS Microbiol. Letts., 1999, vol. 172, no. 1, pp. 35–40.CrossRefGoogle Scholar
  65. 65.
    Maehara, T., Yoshida, M., Ito, Y., Tomita, S., Takabatake, K., Ichinose, H., and Kaneko, S., Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain, Biosci. Biotechnol. Biochem., 2010, vol. 74, no. 5, pp. 1126–1128.PubMedCrossRefGoogle Scholar
  66. 66.
    Kim, S., Song, J., and Choi, H.T., Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration, FEMS Microbiol. Letts., 2004, vol. 233, no. 2, pp. 201–204.CrossRefGoogle Scholar
  67. 67.
    Hirano, T., Sato, T., Yaegashi, K., and Enei, H., Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance, Mol. Gen. Genet., 2000, vol. 263, no. 6, pp. 1047–1052.PubMedCrossRefGoogle Scholar
  68. 68.
    Nakade, K., Watanabe, H., Sakamoto, Y., and Sato, T., Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence, Microbiol. Res., 2011, vol. 166, no. 6, pp. 484–493.PubMedCrossRefGoogle Scholar
  69. 69.
    Sato, T., Yaegashi, K., Ishii, S., Hirano, T., Kajiwara, S., Shishido, K., and Enei, H., Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA, Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 12, pp. 2346–2350.PubMedCrossRefGoogle Scholar
  70. 70.
    Irie, T., Sato, T., Saito, K., Honda, Y., Watanabe, T., Kuwahara, M., and Enei, H., Construction of a homologous selectable marker gene for Lentinula edodes transformation, Biosci. Biotechnol. Biochem., 2003, vol. 67, no. 9, pp. 2006–2009.PubMedCrossRefGoogle Scholar
  71. 71.
    Noh, W., Kim, S.W., Bae, D.W., Kim, J.Y., and Ro, H.S., Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzyme-mediated integration, J. Microbiol., 2010, vol. 48, no. 2, pp. 253–256.PubMedCrossRefGoogle Scholar
  72. 72.
    Yin, Y., Liu, Y., Jin, H., Wang, S., Zhao, S., Geng, X., Li, M., and Xu, F., Polyethylene glycol-mediated transformation of fused egfphph gene under the control of gpd promoter in Pleurotus eryngii, Biotechnol. Lett., 2012, vol. 34, no. 10, pp. 1895–1900.PubMedCrossRefGoogle Scholar
  73. 73.
    Lin, J., Zheng, M., Wang, J., Shu, W., and Guo, L., Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis, Prog. Nat. Sci., 2008, vol. 18, no. 7, pp. 819–824.CrossRefGoogle Scholar
  74. 74.
    Irie, T., Honda, Y., Hirano, T., Sato, T., Enei, H., Watanabe, T., and Kuwahara, M., Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos 5-6, pp. 707–709.PubMedCrossRefGoogle Scholar
  75. 75.
    Irie, T., Honda, Y., Watanabe, T., and Kuwahara, M., Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA, Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 5, pp. 563–565.PubMedCrossRefGoogle Scholar
  76. 76.
    Joh, J.H., Kim, B.G., Chu, K.S., Kong, W.S., Yoo, Y.B., and Lee, C.S., The efficient transformation of Pleurotus ostreatus using REMI method, Mycobiology, 2003, vol. 31, no. 1, 32–35.CrossRefGoogle Scholar
  77. 77.
    Peng, M., Singh, N.K., and Lemke, P.A., Recovery of recombinant plasmids from Pleurotus ostreatus transformants, Curr. Genet., 1992, vol. 22, no. 1, pp. 53–59.PubMedCrossRefGoogle Scholar
  78. 78.
    Li, G., Li, R., Liu, Q., Wang, Q., Chen, M., and Li, B., A highly efficient polyethylene glycol-mediated transformation method for mushrooms, FEMS Microbiol. Letts., 2006, vol. 256, no. 2, pp. 203–208.CrossRefGoogle Scholar
  79. 79.
    Kim, K., Leem, Y., Kim, K., Kim, K., and Choi, H.T., Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration, FEMS Microbiol. Letts., 2002, vol. 209, no. 2, pp. 273–276.CrossRefGoogle Scholar
  80. 80.
    Kitamura, K., Kaneko, T., and Yamamoto, Y., Lysis of viable yeast cells by enzymes of Arthrobacter luteus, Arch. Biochem. Biophys., 1971, vol. 145, no. 1, pp. 402–404.PubMedCrossRefGoogle Scholar
  81. 81.
    Peterson, E.M., Hawley, R.J., and Calderone, R.A., An ultrastructural analysis of protoplast-spheroplast induction in Cryptoccocus neoformans, Can. J. Microbiol., 1976, vol. 22, no. 10, pp. 1518–1521.PubMedCrossRefGoogle Scholar
  82. 82.
    Case, M.E., Schweizer, M., Kushner, S.R., and Giles, N.H., Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5259–5263.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Evans, C.T. and Conrad, D., An improved method for protoplast formation and its application in the fusion of Rhodotorula rubra with Saccharomyces cerevisiae, Arch. Microbiol., 1987, vol. 148, no. 1, pp. 77–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Bailey, A.M., Mena, G.L., and Herrera-Estrella, L., Genetic transformation of the plant pathogens Phytophtora capsici and Phytophtora parasitica, Nucleic Acids Res., 1991, vol. 19, no. 15, pp. 4273–4278.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rhodes, J.C. and Kwon-Chung, K.J., Production and regeneration of protoplast from Cryptococcus, Sabouraudia, 1985, vol. 23, no. 1, pp. 77–80.PubMedCrossRefGoogle Scholar
  86. 86.
    May, G.S., Fungal Technology, Applied Molecular Genetics of Filamentous Fungi, Kinghorn, J.R. and Turner, G., Eds., Glasgow, 1992, pp. 1–27.Google Scholar
  87. 87.
    Finchman, J.R., Transformation in fungi, Microbiol. Rev., 1989, vol. 53, no. 1, pp. 148–170.Google Scholar
  88. 88.
    Hashizaki, K., Taguchi, H., Itoh, C., Sakai, H., Abe, M., Saito, Y., and Ogawa, N., Effects of poly(ethylene glycol) (PEG) chain length of PEGlipid on the permeability of liposomal bilayer membranes, Chem. Pharm. Bull. (Tokyo), 2003, vol. 51, no. 7, pp. 815–820.CrossRefGoogle Scholar
  89. 89.
    Timberlake, W.E. and Marshall, M.A., Genetic engineering of filamentous fungi, Science, 1989, vol. 244, no. 4910, pp. 1313–1317.PubMedCrossRefGoogle Scholar
  90. 90.
    He, L., Feng, J., Lu, S., Chen, Z., Chen, C., He, Y., Yi, X., and Xi, L., Genetic transformation of fungi, Int. J. Dev. Biol., 2017, vol. 61, nos. 6–7, pp. 375–381.PubMedCrossRefGoogle Scholar
  91. 91.
    Kojima, R., Arai, T., Kasumi, T., and Ogihara, J., Construction of transformation system in Penicillium purpurogenum, J. Biosci. Bioeng., 2015, vol. 119, no. 3, pp. 314–316.PubMedCrossRefGoogle Scholar
  92. 92.
    Yao, Y.R., Tian, X.L., Shen, B.M., Mao, Z.C., Chen, G.H., and Xie, B.Y., Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita, World J. Microbiol. Biotechnol., 2015, vol. 31, no. 4, pp. 549–556.PubMedCrossRefGoogle Scholar
  93. 93.
    Ito, H., Fukuda, Y., Murata, K., and Kimura, A., Transformation of intact yeast cells treated with alkali cations, J. Bacteriol., 1983, vol. 153, no. 1, pp. 163–168.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Gietz, R.D., Schiestl, R.H., Willems, A.R., and Woods, R.A., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast, 1995, vol. 11, no. 4, pp. 355–360.PubMedCrossRefGoogle Scholar
  95. 95.
    Dhawale, S.S., Paietta, J.V., and Marzluf, G.A., A new, rapid and efficient transformation procedure for Neurospora, Curr. Genet., 1984, vol. 8, no. 1, pp. 77–79.PubMedCrossRefGoogle Scholar
  96. 96.
    Bej, A.K. and Perlin, M.G., A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment, Gene, 1989, vol. 80, no. 1, pp. 171–176.PubMedCrossRefGoogle Scholar
  97. 97.
    Brzobohatý, B. and Kovác, L., Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity, J. Gen. Microbiol., 1986, vol. 132, no. 11, pp. 3089–3093.PubMedGoogle Scholar
  98. 98.
    Pham, T.A., Kawai, S., and Murata, K., Visualization of the synergistic effect of lithium acetate and singlestranded carrier DNA on Saccharomyces cerevisiae transformation, Curr. Genet., 2011, vol. 57, no. 4, pp. 233–239.PubMedCrossRefGoogle Scholar
  99. 99.
    Shigekawa, K. and Dower, W.J., Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells, BioTechniques, 1988, vol. 6, no. 8, pp. 742–751.PubMedGoogle Scholar
  100. 100.
    Ward, M., Kodama, K.H., and Wilson, L.J., Transformation of Aspergillus awamori and A. niger by electroporation, Exp. Mycol., 1989, vol. 13, no. 3, pp. 289–293.CrossRefGoogle Scholar
  101. 101.
    Goldman, G.H., van Montagu, M., and Herrera-Estrella, A., Transformation of Trichoderma harzianum by high-voltage electric pulse, Curr. Genet., 1990, vol. 17, no. 2, pp. 169–174.CrossRefGoogle Scholar
  102. 102.
    Chakraborty, B.N., Patterson, N.A., and Kapoor, M., An electroporation-based system for high efficiency transformation of germinated conidia of filamentous fungi, Can. J. Microbiol., 1991, vol. 37, no. 11, pp. 858–863.PubMedCrossRefGoogle Scholar
  103. 103.
    Edman, J.C. and Kwon-Chung, K.J., Isolation of the URA5 gene from Cryptococcus neoformans and its use as a selective marker for transformation, Mol. Cell. Biol., 1990, vol. 10, no. 9, pp. 4538–4544.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    van de Rhee, M.D., Graca, P.M., Huizing, H.J., and Mooibroek, H., Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance, Mol. Gen. Genet., 1996, vol. 250, no. 3, pp. 252–258.PubMedGoogle Scholar
  105. 105.
    Kuo, C.Y., Chou, S.Y., Hseu, R.S., and Huang, C.T., Heterologous expression of EGFP in enoki mushroom Flammulina velutipes, Bot. Stud., 2010, vol. 51, no. 3, pp. 303–309.Google Scholar
  106. 106.
    Sun, L., Cai, H., Xu, W., Hu, Y., Gao, Y., and Lin, Z., Efficient transformation of the medicinal mushroom Ganoderma lucidum, Plant Mol. Biol. Rep., 2001, vol. 19, no. 4, pp. 383–384.CrossRefGoogle Scholar
  107. 107.
    Sun, L., Cai, H., Xu, W., Hu, Y., and Lin, Z., CaMV 35s promoter directs β-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus, Mol. Biotechnol., 2002, vol. 20, no. 3, pp. 239–244.PubMedCrossRefGoogle Scholar
  108. 108.
    Kim, J.K., Park, Y.J., Kong, W.S., and Kang, H.W., Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes, Mycobiology, 2010, vol. 38, no. 4, pp. 331–335.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kuo, C.Y. and Huang, C.T., A reliable transformation method and heterologous expression of β-glucuronidase in Lentinula edodes, J. Microbiol. Methods, 2008, vol. 72, no. 2, pp. 111–115.PubMedCrossRefGoogle Scholar
  110. 110.
    Simonis, P., Kersulis, S., Stankevich, V., Kaseta, V., Lastauskiene, E., and Stirke, A., Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields, Bioelectrochemistry, 2017, vol. 115, pp. 19–25.PubMedCrossRefGoogle Scholar
  111. 111.
    Miklenić, M., Žunar, B., Štafa, A., and Svetec, I., Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis, FEMS Yeast Res., 2015, vol. 15, no. 8, fov096.PubMedCrossRefGoogle Scholar
  112. 112.
    Rocha-Ramirez, V., Omero, C., Chet, I., Horwitz, B.A., and Herrera-Estrella, A., Trichoderma atroviride Gprotein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation, Eukaryot. Cell, 2002, vol. 1, no. 4, pp. 594–605.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sunagawa, M. and Magae, Y., Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment, FEMS Microbiol. Letts., 2002, vol. 211, no. 2, pp. 143–146.CrossRefGoogle Scholar
  114. 114.
    Sunagawa, M., Murata, H., Miyazaki, Y., and Nakamura, M., Transformation of Lyophyllum decastes by particle bombardment, Mycoscience, 2007, vol. 48, no. 3, pp. 195–197.CrossRefGoogle Scholar
  115. 115.
    Schiestl, R.H. and Petes, T.D., Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, no. 17, pp. 7585–7589.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kuspa, A. and Loomis, W.F., Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 18, pp. 8803–8807.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Dynes, J.L., Clark, A.M., Shaulsky, G., Kuspa, A., Loomis, W.F., and Firtel, R.A., LagC is required for cell–cell interactions that are essential for cell-type differentiation in Dictyostelium, Genes Dev., 1994, vol. 8, no. 8, pp. 948–958.PubMedCrossRefGoogle Scholar
  118. 118.
    Lu, S., Lyngholm, L., Yan, G., Bronson, C., Yoder, O.C., and Turgeon, B.G., Tagged mutation at the tox1 locus of Cochliobolus heterostrophus by restriction enzymemediated integration, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 26, pp. 12649–12653.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bölker, M., Böhnert, H.U., Braun, K.H., Görl, J., and Kahmann, R., Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI), Mol. Gen. Genet., 1995, vol. 248, no. 5, pp. 547–552.PubMedCrossRefGoogle Scholar
  120. 120.
    Sweigard, J.A., Carroll, A.M., Farral, L., Chumley, F.G., and Valent, B., Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis, Mol. Plant–Microbe Interact., 1998, vol. 11, no. 5, pp. 404–412.PubMedCrossRefGoogle Scholar
  121. 121.
    Thon, M.R., Nuckles, E.M., and Vaillancourt, L.J., Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola, Mol. Plant–Microbe Interact., 2000, vol. 13, no. 12, pp. 1356–1365.PubMedCrossRefGoogle Scholar
  122. 122.
    Bundock, P., de Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J., Trans-kingdom t-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae, EMBO J., 1995, vol. 14, no. 13, pp. 3206–3214.PubMedPubMedCentralGoogle Scholar
  123. 123.
    De Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G., Agrobacterium tumefaciens-mediated transformation of filamentous fungi, Nat. Biotechnol., 1998, vol. 16, no. 9, pp. 839–842.PubMedCrossRefGoogle Scholar
  124. 124.
    Frandsen, R.J., A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation, J. Microbiol. Methods, 2011, vol. 87, no. 3, pp. 247–262.PubMedCrossRefGoogle Scholar
  125. 125.
    Wang, D., He, D., Li, G., Gao, S., Lv, H., Shan, Q., and Wang, L., An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus, J. Microbiol. Methods, 2014, vol. 98, pp. 114–118.PubMedCrossRefGoogle Scholar
  126. 126.
    Crespo-Sempere, A., Lopez-Perez, M., Martinez-Culebras, P.V., and Gonzalez-Candelas, L., Development of a green fluorescent tagged strain of Aspergillus carbonarius to monitor fungal colonization in grapes, Int. J. Food Microbiol., 2011, vol. 148, no. 2, pp. 135–140.PubMedCrossRefGoogle Scholar
  127. 127.
    Mora-Lugo, R., Zimmermann, J., Rizk, A.M., and Fernandez-Lahore, M., Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach, BMC Microbiol., 2014, vol. 14, p. 247.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J., Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination, Nat. Biotechnol., 1999, vol. 17, no. 6, pp. 598–601.PubMedCrossRefGoogle Scholar
  129. 129.
    Cardoza, R.L., Vizcaino, J.A., Hermosa, M.R., Monte, E., and Gutierrez, S., A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast-and Agrobacterium-mediated transformation, J. Microbiol., 2006, vol. 44, no. 4, pp. 383–395.PubMedGoogle Scholar
  130. 130.
    Michielse, C.B., Ram, A.F., Hooykaas, P.J., and Hodel, C.A., Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori, Fungal Genet. Biol., 2004, vol. 41, no. 5, pp. 571–578.PubMedCrossRefGoogle Scholar
  131. 131.
    Mullins, E., Romaine, C.P., Chen, X., Geiser, D., Raina, R., and Kang, S., Agrobacterium tumefaciensmediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer, Phytopathology, 2001, vol. 91, no. 2, pp. 173–180.PubMedCrossRefGoogle Scholar
  132. 132.
    Ruiz-Diez, B., Strategies for the transformation of filamentous fungi, J. Appl. Microbiol., 2002, vol. 92, no. 2, pp. 189–195.PubMedCrossRefGoogle Scholar
  133. 133.
    Mikosch, T.S., Lavrijssen, B., Sonnenberg, A.S., and van Griensven, L.J., Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens, Curr. Genet., 2001, vol. 39, no. 1, pp. 35–39.PubMedCrossRefGoogle Scholar
  134. 134.
    Wang, K., Methods in Molecular Biology, New York: Humana Press, 2006, vol. 344, pp. 395–475.Google Scholar
  135. 135.
    Wang, J., Guo, L., Zhang, K., Wu, Q., and Lin, J., Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea, Bioresour. Technol., 2008, vol. 99, no. 17, pp. 8524–8527.PubMedCrossRefGoogle Scholar
  136. 136.
    Sun, W., Liu, L., Hu, X., Tang, J., Liu, P., Chen, J., and Chen, Y., Generation and identification of DNA sequence flanking T-DNA integration site of Trichoderma atroviride mutants with high dichlorvos-degrading capacity, Bioresour. Technol., 2009, vol. 100, no. 23, pp. 5941–5946.PubMedCrossRefGoogle Scholar
  137. 137.
    Duarte, R.T., Staats, C.C., Fungaro, M.H., Schrank, A., Vainsten, M.H., Furlaneto-Maia, L., Nakamura, C.V., de Souza, W., and Furlaneto, M.C., Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum, Lett. Appl. Microbiol., 2007, vol. 44, no. 3, pp. 248–254.PubMedCrossRefGoogle Scholar
  138. 138.
    Rho, H., Kang, S., and Lee, Y., Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Magnaporthe grisea, Mol. Cells, 2001, vol. 12, no. 3, pp. 407–411.PubMedGoogle Scholar
  139. 139.
    Dobinson, K.F., Grant, S.J., and Kang, S., Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahlia, Curr. Genet., 2004, vol. 45, no. 2, pp. 104–110.PubMedCrossRefGoogle Scholar
  140. 140.
    Zwiers, L.-H. and De Waard, M.A., Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola, Curr. Genet., 2001, vol. 39, nos. 5–6, pp. 388–393.PubMedCrossRefGoogle Scholar
  141. 141.
    Bundock, P., Mroczek, K., Winkler, A.A., Steensma, H.Y., and Hooykaas, P.J., T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis, Mol. Gen. Genet., 1999, vol. 261, no. 1, pp. 115–121.PubMedCrossRefGoogle Scholar
  142. 142.
    Sullivan, T.D., Rooney, P.J., and Klein, B.S., Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast, Eukaryot. Cell, 2002, vol. 1, no. 6, pp. 895–905.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C.P., A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus, Appl. Environ. Microbiol., 2000, vol. 66, no. 10, pp. 4510–4513.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Lu, Z., Kong, X., Lu, Z., Xiao, M., Chen, M., Zhu, L., Shen, Y., Hu, X., and Song, S., Paraaminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus, PLoS One, 2014, vol. 9, no. 3, p. e91298.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Zheng, Z., Huang, C., Cao, L., Xie, C., and Han, R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris, Fungal Biol., 2011, vol. 115, no. 3, pp. 265–274.PubMedCrossRefGoogle Scholar
  146. 146.
    Cho, J.H., Lee, S.E., Chang, W.B., and Cha, J.S., Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes, Mycobiology, 2006, vol. 34, no. 2, pp. 104–107.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Park, S.Y., van Peer, A.F., Jang, K.Y., Shin, P.G., Park, Y., Yoo, Y.B., Park, K.M., and Kong, W.S., Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes, Korean J. Mycol., 2010, vol. 38, no. 1, pp. 48–53.CrossRefGoogle Scholar
  148. 148.
    Okamoto, T., Yamada, M., Sekiya, S., Okuhara, T., Taguchi, G., Inatomi, S., and Shimosaka, M., Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes, Biosci. Biotechnol. Biochem., 2010, vol. 74, no. 11, pp. 2327–2329.PubMedCrossRefGoogle Scholar
  149. 149.
    Shi, L., Fang, X., Li, M., Mu, D., Ren, A., Tan, Q., and Zhao, M., Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum, J. Microbiol. Biotechnol., 2012, vol. 28, no. 1, pp. 283–291.CrossRefGoogle Scholar
  150. 150.
    Hatoh, K., Izumitsu, K., Morita, A., Shimizu, K., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., and Tanaka, C., Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid, Mycoscience, 2013, vol. 54, no. 1, pp. 8–12.CrossRefGoogle Scholar
  151. 151.
    Zhang, J.J., Shi, L., Chen, H., Sun, Y.Q., Zhao, M.W., Ren, A., Chen, M.J., Wang, H., and Feng, Z.Y., An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus, Microbiol. Res., 2014, vol. 169, nos 9-10, pp. 741–748.PubMedCrossRefGoogle Scholar
  152. 152.
    Zubieta, M.P., Silva, CoelhoI., de Queiroz, M.V., and de Araujo, E.F., Agrobacterium tumefaciens-mediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata, Ann. Microbiol., 2014, vol. 64, no. 4, pp. 1875–1878.CrossRefGoogle Scholar
  153. 153.
    Chung, S.J., Kim, S., Sapkota, K., Choi, B.S., Shin, C., and Kim, S.J., Expression of recombinant human interleukin-32 in Pleurotus eryngii, Ann. Microbiol., 2011, vol. 61, no. 2, pp. 331–338.CrossRefGoogle Scholar
  154. 154.
    Kim, K.H., Kang, Y.M., Im, C.H., Ali, A., Kim, S.Y., Je, H.J., Kim, M.K., Rho, H.S., Lee, H.S., Kong, W.S., and Ryu, J.S., Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii, PLoS One, 2014, vol. 9, no. 8, p. e104693.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ding, Y., Liang, S., Lei, J., Chen, L., Kothe, E., and Ma, A., Agrobacterium tumefaciens-mediated fused egfp–hph gene expression under the control of gpd promoter in Pleurotus ostreatus, Microbiol. Res., 2011, vol. 166, no. 4, pp. 314–322.PubMedCrossRefGoogle Scholar
  156. 156.
    Pardo, A.G., Hanif, M., Raudaskoski, M., and Gorfer, M., Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens, Mycol. Res., 2002, vol. 106, no. 2, pp. 132–137.CrossRefGoogle Scholar
  157. 157.
    Godio, R.P., Fouces, R., Gudina, E.J., and Martin, J.F., Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium, Curr. Genet., 2004, vol. 46, no. 5, pp. 287–294.PubMedCrossRefGoogle Scholar
  158. 158.
    Murata, H., Igasaki, T., Shishido, K., and Sunagawa, M., Agrobacterium-mediated transformation of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces commercially valuable fruit bodies, matsutake, Mycoscience, 2006, vol. 47, no. 4, pp. 228–231.CrossRefGoogle Scholar
  159. 159.
    Murata, H., Sunagawa, M., Yamada, T., Shishido, K., and Igasaki, T., Expression of the autofluorescent protein, DsRed2, in the recombinants of the ectomycorrhizal basidiomycete, Suillus grevillei, generated by Agrobacterium mediated transformation, Mycorrhiza, 2006, vol. 16, no. 6, pp. 407–412.PubMedCrossRefGoogle Scholar
  160. 160.
    Kim, S., Ha, B.-S., and Ro, H.-S., Current technologies and related issues for mushroom transformation, Mycobiology, 2015, vol. 43, no. 1, pp. 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Challen, M., Gregorg, K., Sreenivasaprasad, S., Rogers, C.C., Cutler, S.B., Diaper, D.C., Elliott, T.J., and Foster, G.D., Transformation technologies for mushrooms, Mushroom Sci., 2000, vol. 15, pp. 165–172.Google Scholar
  162. 162.
    Leach, K., Odon, V., Zhang, C., Kim, H.K., Henderson, J., Warner, P., Challen, M., and Elliott, T., Progress in Agaricus bisporus transformation: Agrobacterium methodologies and development of novel marker genes, Mushroom Sci., 2004, vol. 16, pp. 93–102.Google Scholar
  163. 163.
    Romaine, C.P. and Schlagnhaufer, C., Mushroom (Agaricus bisporus), in Agrobacterium Protocols, Totowa, New Jersey: Humana Press, 2006, vol. 2, pp. 453–463.Google Scholar
  164. 164.
    Ando, A., Sumida, Y., Negoro, H., Suroto, D.A., Ogawa, J., Sakuradani, E., and Shimizu, S., Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding, Appl. Environ. Microbiol., 2009, vol. 75, no. 17, pp. 5529–5535.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Chen, E.C., Su, Y.H., Kanagarajan, S., Agrawal, D.C., and Tsay, H.S., Development of an activation tagging system for the basidiomycetous medicinal fungus Antrodia cinnamomea, Mycol. Res., 2009, vol. 113, pp. 290–297.PubMedCrossRefGoogle Scholar
  166. 166.
    Covert, S.F., Kapoor, P., Lee, M.-H., Briley, A., and Nairn, C.J., Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum, Mycol. Res., 2001, vol. 105, no. 3, pp. 259–264.CrossRefGoogle Scholar
  167. 167.
    Combier, J.P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum, FEMS Microbiol. Letts., 2003, vol. 220, no. 1, pp. 141–148.CrossRefGoogle Scholar
  168. 168.
    Stachel, S.E., Nester, E.W., and Zambryski, P.C., A plant cell factor induces Agrobacterium tumefaciens vir gene expression, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, no. 2.Google Scholar
  169. 169.
    Reis, M.C., Pelegrinelli Fungaro, M.H., Delgado Duarte, R.T., Furlaneto, L., and Furlaneto, M.C., Agrobacterium tumefaciens mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana, J. Microbiol. Methods, 2004, vol. 58, no. 2, pp. 197–202.PubMedCrossRefGoogle Scholar
  170. 170.
    Michielse, C.B., Hooykaas, P.J., Hondel, C.A., and Ram, A.F., Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori, Nature Prot., 2008, vol. 3, no. 10, pp. 1671–1678.CrossRefGoogle Scholar
  171. 171.
    Kostetsky, I.E. and Kordyum, V.A., Liposome-mediated delivery of DNA to Saccharomyces cerevisiae protoplasts, Biopolym. Cell, 1987, vol. 3, no. 1, pp. 35–40.CrossRefGoogle Scholar
  172. 172.
    Ain, Q.U., Chung, J.Y., and Kim, Y.H., Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN, J. Control. Release, 2015, vol. 205, pp. 120–127.CrossRefGoogle Scholar
  173. 173.
    Doudna, J.F. and Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9, Science, 2014, vol. 346, no. 6213, art. 1258096.Google Scholar
  174. 174.
    Carroll, D., Genome engineering with targetable nucleases, Annu. Rev. Biochem., 2014, vol. 83, pp. 409–439.PubMedCrossRefGoogle Scholar
  175. 175.
    DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., and Church, G.M., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 2013, vol. 41, no. 7, pp. 4336–4343.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Arazoe, T., Miyoshi, K., Yamato, T., Ogawa, T., Ohsato, S., Arie, T., and Kuwata, S., Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus, Biotechnol. Bioeng., 2015, vol. 112, no. 12, pp. 2543–2549.PubMedCrossRefGoogle Scholar
  177. 177.
    Katayama, T., Tanaka, Y., Okabe, T., Nakamura, H., Fujii, W., Kitamoto, K., and Maruyama, J., Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae, Biotechnol. Lett., 2016, vol. 38, no. 4, pp. 637–642.PubMedCrossRefGoogle Scholar
  178. 178.
    Liu, R., Chen, L., Jiang, Y., Zhou, Z., and Zou, G., Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system, Cell Discov., 2015, vol. 1, Art. 15007.Google Scholar
  179. 179.
    Nødvig, C.S., Nielsen, J.B., Kogle, M.E., and Mortensen, U.H., A CRISPR/Cas9 system for genetic engineering of filamentous fungi, PLoS One, 2015, vol. 10, no. 7.CrossRefGoogle Scholar
  180. 180.
    Fuller, K., Chen, S., Loros, J.J., and Dunlap, J.C., Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigates, Eukaryot. Cell, 2015, vol. 14, no. 11, pp. 1073–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Matsuura, T., Baek, M., Kwon, J., and Hong, C., Efficient gene editing in Neurospora crassa with CRISPR technology, Fungal Biol. Biotechnol., 2015, vol. 2, Art. 4.Google Scholar
  182. 182.
    Pohl, C., Kiel, J.A., Driessen, A.J., Bovenberg, R.A., and Nygard, Y., CRISPR/Cas9 based genome editing of Penicillium chrysogenum, ACS Synth. Biol., 2016, vol. 5, no. 7, pp. 754–764.PubMedCrossRefGoogle Scholar
  183. 183.
    Schuster, M., Schweizer, G., Reissmann, S., and Kahmann, R., Genome editing in Ustilago maydis using the Crispr–Cas system, Fungal Genet. Biol., 2016, vol. 89, pp. 3–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Goldman, G.H., van Montagu, M., and Herrera-Estrella, A., Filamentous fungi, in Transformation of Plants and Soil Microorganisms, New York, Cambridge: Univ. Press, 1995, pp. 34–49.CrossRefGoogle Scholar
  185. 185.
    Stahl, U., Tudzynski, P., Kück, U., and Esser, K., Replication and expression of a bacterial-mitochondrial hybrid plasmid in the fungus Podospora anserine, Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, no. 11, pp. 3641–3645.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Stohl, L.L. and Lambowitz, A.M., Construction of a shuttle vector for the filamentous fungus Neurospora crassa, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, no. 4, pp. 1058–1062.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Esser, K., Kuck, U., Stahl, U., and Tudzynski, P., Cloning vectors of mitochondrial origin for eukaryotes: a new concept in genetic engineering, Curr. Genet., 1983, vol. 7, no. 4, pp. 239–243.PubMedCrossRefGoogle Scholar
  188. 188.
    Balance, D.J. and Turner, G., Development of a high frequency transforming vector for Aspergillus nidulans, Gene, 1985, vol. 36, no. 3, pp. 321–331.CrossRefGoogle Scholar
  189. 189.
    Tusukuda, T., Carleton, S., Fotheringham, S., and Holloman, W.K., Isolation and characterization of an autonomously replicating sequence from Ustilago maydis, Mol. Cell. Biol., 1988, vol. 8, no. 9, pp. 3703–3709.CrossRefGoogle Scholar
  190. 190.
    Van Heeswijck, R., Autonomous replication of plasmids in Mucor transformants, Carlsber Res. Commun., 1986, vol. 51, no. 6, pp. 433–443.CrossRefGoogle Scholar
  191. 191.
    Roncero, M.I.G., Jepsen, L.P., Stroman, P., and van Heeswijck, R., Characterization of a leuA gene and an ARS element from Mucor circinelloides, Gene, 1989, vol. 84, no. 2, pp. 335–343.PubMedCrossRefGoogle Scholar
  192. 192.
    Fierro, F., Kosalkova, K., Gutierrez, S., and Martin, J.F., Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum, Curr. Genet., 1996, vol. 29, no. 5, pp. 482–489.PubMedCrossRefGoogle Scholar
  193. 193.
    Bowyer, P., Osbourn, A.E., and Daniels, M.J., An “instant gene bank” method for heterologous gene cloning: complementation of two Aspergillus nidulans mutants with Gaeumannomyces graminis DNA, Mol. Gen. Genet., 1994, vol. 242, no. 4, pp. 448–454.PubMedGoogle Scholar
  194. 194.
    Powell, W.A. and Kistler, H.C., In vivo rearrangement of foreign DNA by Fusarium oxysporum produces lineal self-replicating plasmids, J. Bacteriol., 1990, vol. 172, no. 6, pp. 3163–3171.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Long, D.M., Smidansky, E.D., Archer, A.J., and Strobel, G.A., In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspore, Fungal Genet. Biol., 1998, vol. 24, no. 3, pp. 335–344.PubMedCrossRefGoogle Scholar
  196. 196.
    Selker, E.U., Cambareri, E.B., Jensen, B.C., and Haak, K.R., Rearrangement of duplicated DNA in specialized cells of Neurospora, Cell, 1987, vol. 51, no. 5, pp. 741–752.PubMedCrossRefGoogle Scholar
  197. 197.
    Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., and Davies, R.W., Transformation by integration in Aspergillus nidulans, Gene, 1983, vol. 26, nos. 2–3, pp. 205–221.PubMedCrossRefGoogle Scholar
  198. 198.
    Suzuki, K., Imai, Y., Yamashita, I., and Fukui, S., In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae, J. Bacteriol., 1983, vol. 155, no. 2, pp. 747–754.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Wang, J., Holden, D.W., and Leong, S.A., Gene transfer system for the phytopathogenic fungus Ustilago maydis, Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, no. 3, pp. 865–869.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Huiet, L. and Case, M., Molecular biology of the qa gene cluster in Neurospora crassa, in Gene Manipulations in Fungi, Bennett, J.W. and Lasure, L.L., Eds., Orlando, FL: Acad. Press, 1985, pp. 229–244.CrossRefGoogle Scholar
  201. 201.
    Boylan, M.T., Mirabito, P.M., Wilett, C.E., Zimmerman, C.R., and Timberlake, W.E., Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans, Mol. Cell. Biol., 1987, vol. 7, no. 9, pp. 3113–3118.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Aramayo, R., Adams, T.H., and Timberlake, W.E., A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans, Genetics, 1989, vol. 122, no. 1, pp. 65–71.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Ballinger, D.G. and Benzer, S., Targeted gene mutations in Drosophila, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, no. 23, pp. 9402–9406.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Li, Nestri., Nicosia, M.G., Brocard-Masson, C., Demais, S., Hua, Van A., Daboussi, M.J., and Scazzochio, C., Heterologous transposition in Aspergillus nidulans, Mol. Microbiol., 2001, vol. 39, no. 5, pp. 1330–1344.CrossRefGoogle Scholar
  205. 205.
    Dmytruk, K.V. and Sibirny, A.A., Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi, Genetika, 2007, vol. 43, no. 8, pp. 1013–1025.Google Scholar
  206. 206.
    DeBacker, M.D., Nelissen, B., Logghe, M., Viaene, J., Loonen, I., Vandoninck, S., de Hoogt, R., Dewaele, S., Simons, F.A., Verhasselt, P., Vanhoof, G., Contreras, R., and Luyten, W.H., An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans, Nat. Biotechnol., 2001, vol. 19, no. 3, pp. 235–241.CrossRefGoogle Scholar
  207. 207.
    Gorlach, J.M., McDade, H.C., Perfect, J.R., and Cox, G.M., Antisense repression in Cryptoccocus neoformans as a laboratory tool and potential antifungal strategy, Microbiology, 2002, vol. 148, no. 1, pp. 213–219.PubMedCrossRefGoogle Scholar
  208. 208.
    Bautista, L.F., Aleksenko, A., Hentzer, M., Santerre-Henriksen, A., and Nielsen, J., Antisense silencing of the creA gene in Aspergillus nidulans, Appl. Environ. Microbiol., 2000, vol. 66, no. 10, pp. 4579–4581.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, vol. 391, no. 6669, pp. 806–811.PubMedCrossRefGoogle Scholar
  210. 210.
    Liu, H., Cottrell, T.R., Pierini, L.M., Goldman, W.E., and Doering, T.L., RNA interference in the pathogenic fungus Cryptoccocus neoformans, Genetics, 2002, vol. 160, no. 2, pp. 463–470.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Casadaban, M.J. and Cohen, S.N., Lactose genes fused to exogenous promoters in one step using a Mulac bacteriophage: in vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 9, pp. 4530–4533.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Ilmen, M., Onnela, M.L., Klemsdal, S., Keranen, S., and Penttila, M., Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei, Mol. Gen. Genet., 1996, vol. 253, no. 3, pp. 303–314.PubMedGoogle Scholar
  213. 213.
    Hynes, M.J., Draht, O.W., and Davis, M.A., Regulation of the acuF gene, encoding phosphoenol pyruvate carboxyl kinase in the filamentous fungus Aspergillus nidulans, J. Bacteriol., 2002, vol. 184, no. 1, pp. 183–190.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Roberts, I.N., Oliver, R.P., Punt, J.P., and Hondel, C.A., Expression of the Escherichia coli beta-glucuronidase gene in industrial and phytopathogenic filamentous fungi, Curr. Genet., 1989, vol. 15, no. 3, pp. 177–180.PubMedCrossRefGoogle Scholar
  215. 215.
    Snoeijers, S.S., Vossen, P., Goosen, T., Broek, H.W., and De Witt, P.J., Transcription of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by a GATA-type transcription factor in Aspergillus nidulans, Mol. Gen. Genet., 1999, vol. 261, nos. 4–5, pp. 653–659.PubMedCrossRefGoogle Scholar
  216. 216.
    Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S., Zeilinger, S., Kullning, C.M., Lorito, M., and Kubicek, C., Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals, Appl. Environ. Microbiol., 1999, vol. 65, no. 5, pp. 1858–1863.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Harkki, A., Uusitalo, J., Bailey, M., Pentilla, M., and Knowles, J.K.C., A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei, Nature Biotechnol., 1989, vol. 7, no. 6, pp. 596–603.CrossRefGoogle Scholar
  218. 218.
    Penalva, M.A., Rowlands, R.T., and Turner, G., The optimization of penicillin biosynthesis in fungi, Trends Biotechnol., 1998, vol. 16, no. 11, pp. 483–489.PubMedCrossRefGoogle Scholar
  219. 219.
    Orejas, M., Tamayo, E.N., Villanueva, A., and Ramon, D.J., Improving extracellular production of food-use enzymes from Aspergillus nidulans, Biotechnology, 2002, vol. 96, no. 1, pp. 43–54.Google Scholar
  220. 220.
    Holz, C., Hesse, O., Bolotina, N., Stahl, U., and Lang, C., A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae, Protein Exp. Purif., 2002, vol. 25, no. 3, pp. 372–378.CrossRefGoogle Scholar
  221. 221.
    Punt, P.J., van Biezen, N., Conesa, A., Albers, A., Magnus, J., and Hondel, C., Filamentous fungi as cell factories for heterologous protein production, Trends Biotechnol., 2002, vol. 20, no. 5, pp. 200–206.PubMedCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations