Skip to main content

Total RNA content in sheep oocytes and developing embryos produced in vitro, a comparative study between spectrophotometric and fluorometric assay


Isolation of total RNA from limited number of oocytes and embryos is a big challenge. DNA free RNA and assessment of RNA integrity are crucial to the success of gene expression studies because poor quality RNA give misleading results. The objective of the present study was to establish a suitable protocol to isolate good quality total RNA from a minimal number of sheep oocytes and embryos that enables the downstream applications, as well as to estimate RNA content in oocytes and developmental stages of embryos. Five protocols were approached to isolate total RNA from oocytes and embryos. Four methods were by standard Trizol protocols and its modification whereas fifth method was by commercial kit (RNeasy mini kit, Quiagen). Total RNA isolated by modified Trizol protocol with coprecipitants (acrylamide and glycogen) showed significantly (P < 0.05) more spectrophotometric reading of RNA concentration than by modified Trizol protocol without coprecipitant followed by commercial kit and conventional Trizol protocol. RNA quality, purity, concentration, RNA per oocyte and expression of GAPDH (house keeping gene) were compared to find the best RNA isolated by different protocols. Spectrophotometric and fluorometric assay were compared to quantify the total RNA concentration in sheep oocytes and different stages of developing embryos. RNA yield by spectrophotometer analysis showed 5–100 times more reading than fluorometer. Significant (P < 0.05) reduction in RNA content was observed in matured oocytes than that of immature oocytes. There was significant (P < 0.05) increase in RNA content after fertilization upto 2–4 cells stage followed by significant (P < 0.05) decrease at 8–16 cells and increased at morula. RNA concentration at blastocyst was significantly low than at morula. From the protocols approached modified Trizol protocol with coprecipitant was most efficient and suitable method over other protocols approached to isolate RNA from few sheep oocytes and embryos for gene expression study.

This is a preview of subscription content, access via your institution.


  1. 1.

    Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T., The RIN: an RNA integrity number for assigning integrity values to RNA measurements, BMC Mol. Biol., 2006, vol. 7, no. 3, pp. 1–14.

    Google Scholar 

  2. 2.

    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York, Cold Spring Harbor Press, 2001.

    Google Scholar 

  3. 3.

    Rump, L.V., Asamoah, B., and Gonzalez-Escalona, N., Comparison of commercial RNA extraction kits for preparation of DNA-free total RNA from salmonella cells, BMC Res. Notes, 2010, vol. 3, pp. 211–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S., Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 2006, vol. 4, no. 10, p. e309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Piko, L. and Clegg, K.B., Quantitative changes in total RNA, total poly (A) and ribosomes in early mouse embryos, Dev. Biol., 1982, vol. 89, no. 2, pp. 362–378.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanatephenol- chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Pavani, K.C., Baron, E.E., Faheem, M., Chaveiro, A., and Silva, F.M., Optimisation of total RNA extraction from bovine oocytes and embryos for gene expression studies and effects of cryoprotectants on total RNA extraction, Cytol. Genet., 2015, vol. 49, no. 4, pp. 232–239.

    Article  Google Scholar 

  8. 8.

    Cox, R.A., The use of guanidinium chloride in the isolation of nucleic acids, in Methods in Enzymology, Grossman, L. and Moldive, K., Eds., Orlando: Med, 1968, vol. 12, pt. B, pp. 120–129.

    Article  CAS  Google Scholar 

  9. 9.

    Kaufman, P.B., Wu, W., Donghern, K., and Cseke, L.J., Handbook of Molecular and Cellular Methods in Biology and Medicine, London: CRC Press, 1995.

    Google Scholar 

  10. 10.

    Tsygankova, V.A., Zayets, N.N., Galkina, L.A., Prikazchikova, L.P., and Blume, Ya.B., An unusual minor protein appearing in embryonic axis cells of haricot bean seeds following germination process stimulated by 6-methylthiouracil, Biopolym. Cell, 1998, vol. 14, no. 5, pp. 438–448.

    Article  CAS  Google Scholar 

  11. 11.

    Domanski, N.N., Galkin, A.P., and Sytnik, K.M., Obtaining of biologically active polyA + RNA from tissues enriched by polysaccharides, Ukr. Biochem. J., 1985, vol. 57, no. 6, pp. 63–69.

    Google Scholar 

  12. 12.

    Lequarre, A.S., Marchandise, J., Moreau, B., Massip, A., and Donnay, I., Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition, Biol. Reprod., 2003, vol. 69, no. 5, pp. 1707–1713.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Telford, N.A., Watson, A.J., and Schultz, G.A., Transition from maternal to embryonic control in early mammalian development: a comparison of several species, Mol. Reprod. Dev., 1990, vol. 26, no. 1, pp. 90–100.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Bolton, V.N., Oades, P.J., and Johnson, M.H., The relationship between cleavage, DNA replication and gene expression in the mouse 2-cell embryo, J. Embryol. Exp. Morphol., 1984, vol. 79, pp. 139–163.

    PubMed  CAS  Google Scholar 

  15. 15.

    Kopecny, V., Flechon, J.E., Camous, S., and Fulka, J., Nucleologenesis and the onset of transcription in the eight cell bovine embryo: fine structural autoradiographic study, Mol. Reprod. Dev., 1989, vol. 1, pp. 79–90.

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Rajhans, R., Kumar, G.S., Chandra, V., Mishra, A., and Sharma, G.T., Total RNA content in buffalo oocytes and different stages of preimplantation embryos produced in vitro, Ind. J. Anim. Sci., 2009, vol. 79, no. 10, pp. 1004–1006.

    CAS  Google Scholar 

  17. 17.

    Mishra, A. and Sharma, G.T., Quantification of mRNA in buffalo oocytes and different stages of developing embryos produced in vitro, Ind. J. Anim. Sci., 2010, vol. 80, no. 2, pp. 121–122.

    Google Scholar 

  18. 18.

    Tisdale, E.J. and Artalejo, C.R., A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2 mediated events, Traffic, 2007, vol. 8, no. 6, pp. 733–741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Barber, R.D., Harmer, D.W., Coleman, R.A., and Clark, B.J., GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues, Physiol. Genomics, 2005, vol. 21, no. 3, pp. 389–395.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Mishra, A., Reddy, I.J., Gupta, P.S.P., and Mondal, S., L-carnitine mediated reduction in oxidative stress and alteration in transcript level of antioxidant enzymes in sheep embryos produced in vitro, Reprod. Domest. Anim., 2016, vol. 51, no. 2, pp. 311–321.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Die, J.V. and Roman, B., Rna quality assessment: a view from plant qPCR studies, J. Exp. Bot., 2012, vol. 63, no. 17, pp. 6069–6077.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Wrenzyckie, C., Hermann, D., Lucas-Hahn, A., Korsawe, K., Lamme, E., and Niemann, H., Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development, Reprod. Fert. Dev., 2005, vol. 17, nos. 1–2, pp. 23–35.

    Article  Google Scholar 

  23. 23.

    Mishra, A., Sharma, G.T., and Kumar, G.S., Expression profile of connexin 43 (Cx43) and poly a polymerase (PAP) genes in buffalo (Bubalus bubalis) embryos produced in vitro, J. Appl. Anim. Res., 2010, vol. 38, no. 1, pp. 29–32.

    Article  CAS  Google Scholar 

  24. 24.

    Abazari-Kia, A.H., Mohammadabadi, M.D., Sangcheshmeh, A.M., and Zhandi, M., Regulation of embryonic development and apoptotic-related gene expression by brain-derived neurotrophic factor in two different culture conditions in ovine, Theriogenology, 2015, vol. 84, no. 1, pp. 62–69.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Mason, P.E., Neilson, G.W., Dempsey, C.E., Barnes, A.C., and Cruickshank, J.M., The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution, Proc. Nat. Acad. Sci. U. S. A., 2003, vol. 100, no. 8, pp. 4557–4561.

    Article  CAS  Google Scholar 

  26. 26.

    Boelhauve, M., Guengoer, T., Zitta, K., Zakhartchenko, V., and Wolf, E., An optimized protocol for extracting RNA from single bovine oocytes and blastomeres, Reprod. Fert. Dev., 2007, vol. 20, no. 1, pp. 164–165.

    Article  Google Scholar 

  27. 27.

    Becker, C., Hammerle-Fickinger, A., Riedmaier, I., and Pfaffl, M., mRNA and microrna quality control for RT-qPCR analysis, Methods, 2010, vol. 50, no. 4, pp. 237–243.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Nolan, T. and Bustin, S., Procedures for quality control of RNA samples for use in quantitative reverse transcription PCR, in Essentials of Nucleic Acid Analysis: A Robust Approach, Keer, J.T. and Birch, L., eds, London, 2008, pp. 189–207.

    Chapter  Google Scholar 

  29. 29.

    Wieczorek, D., Delauriere, L., and Schagat, T., Methods of RNA Quality Assessment, Promega Corporation, Updated October 2012.

    Google Scholar 

  30. 30.

    Cirera, S., Highly efficient method for isolation of total RNA from adipose tissue, BMC Res. Notes, 2013, vol. 6, pp. 472–476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Gaillard, C. and Strauss, F., Ethanol precipitation of DNA with linear polyacrylamide as a carrier, Nucleic. Acid Res., 1990, vol. 18, no. 2, p. 378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Parthipan, S., Selvaraju, S., Somashekar, L., Kolte, A.P., Arangasamy, A., and Ravindra, J.P., Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus), Anal. Biochem., 2015, vol. 482, pp. 32–39.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Tavares, L., Alves, P.M., Ferreira, R.B., and Santos, C.N., Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma, BMC Res. Notes, 2011, vol. 4, no. 3. doi 10.1186/1756-0500-1-140

    Google Scholar 

  34. 34.

    Vermeulen, J., De Preter, K., Lefever, S., Nuytens, J., De Vloed, F., Derveaux, S., Hellemans, J., Speleman, F., and Vandesompele, J., Measurable impact of RNA quality on gene expression results from quantitative PCR, Nucleic Acid. Res., 2011, vol. 39, no. 9, p. e63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Crozet, N., Kanka, J., Motlik, J., and Fulka, J., Nucleolar fine structure and RNA synthesis in bovine oocytes from antral follicles, Gamet. Res., 1986, vol. 14, no. 1, pp. 65–73.

    Article  CAS  Google Scholar 

  36. 36.

    Gandolfi, F. and Moor, R.M., Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells, J. Reprod. Fertil., 1987, vol. 81, no. 1, pp. 23–28.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Iwasaki, S., Wilmut, I., and Campbell, K.H.S., Timedependent RNA synthesis in early bovine embryos derived from in-vitro fertilization, J. Reprod. Dev., 1997, vol. 43, no. 4, pp. 271–277.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ashish Mishra.

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Reddy, I.J., Gupta, P.S.P. et al. Total RNA content in sheep oocytes and developing embryos produced in vitro, a comparative study between spectrophotometric and fluorometric assay. Cytol. Genet. 52, 62–74 (2018).

Download citation


  • RNA
  • oocytes
  • embryos
  • sheep
  • spectrophotometer
  • fluorometer