Cytology and Genetics

, Volume 52, Issue 1, pp 21–30 | Cite as

Introgression of Aegilops mutica genes into common wheat genome

  • T. S. IefimenkoEmail author
  • M. Z. Antonyuk
  • V. S. Martynenko
  • A. G. Navalihina
  • T. K. Ternovska


Introgression of genetic material from wheat wild relatives into the common wheat genome remains important. This is a natural and inexhaustible source of enrichment of the wheat gene pool with genes that improve wheat’s adaptive potential. Hexaploid lines F4–F5 of wheat type were developed via hybridization of common wheat Aurora (AABBDD) and genome-substituted amphidiploid Aurotica (AABBTT). The hexaploid genome of the latter includes the diploid genome TT from wheat relative Aegilops mutica instead of subgenome DD of common wheat. F1–F3 hybrids had limited self-fertility, which had substantially increased for some derivatives in F4–F5. For all generations, development of the lines was accompanied by cytogenetic control of the chromosome numbers. The chromosome numbers varied in general from 33 to 46 depending upon generation. In most descendants, that number was 42 chromosomes in F4 when plants with chromosome numbers 40–44 were selected in each generation. F5 lines originate from nine selffertile F2 plants, differ from Aurora according to some morphological characters, and have alien DNA in their genome as was demonstrated by DNA dot-blot hybridization with genomic DNA of Aegilops mutica as a probe.


introgression lines common wheat Aegilops mutica multiple introgressions wheat morphological characters karyotype dot-blot hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bedö, Z. and Láng, L., Wheat breeding: current status and bottlenecks, Alien Introgression in Wheat, in Cytogenetics, Molecular Biology, and Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Springer, 2015, chap. 3, pp. 77–101.Google Scholar
  2. 2.
    Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Ogbonnaya, F., Kishii, M., Bonnett, D., Wang, R.R.C., Xu, S., Chen, P., Mahmood, T., Bux, H., and Farrakh, S., Genetic diversity for wheat improvement as a conduit to food security, in Advances in Agronomy, Sparks, D.L., Ed., Elsevier, 2013, vol. 122, pp. 179–258.CrossRefGoogle Scholar
  3. 3.
    Ceoloni, C., Kuzmanovic, L., Forte, P., Virili, M.E., and Bitti, A., Wheat-perennial triticeae introgressions: major achievements and prospects, in alien introgression in wheat. cytogenetics, Molecular Biology, and Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Springer, 2015, chap. 11, pp. 179–257.Google Scholar
  4. 4.
    Gill, B.S., Friebe, B., Raupp, W.J., et al., Wheat genetic resource center: the first 25 years, Adv. Agron., 2006, vol. 89, pp. 73–133.CrossRefGoogle Scholar
  5. 5.
    Ogbonnaya, F.C., Abdalla, O.S., Mujeeb-Kazi, A., Kazi, A.G., Xu, S.S., Gosman, N., Lagudah, E.S., Bonnett, D.G., Sorrells, M.E., and Tsujimoto, H., Synthetic hexaploids: harnessing species of primary gene pool for wheat improvement, Plant Breed. Rev., 2013, vol. 37, pp. 35–122.Google Scholar
  6. 6.
    Liu, W.X., Jin, Y., Rouse, M., Friebe, B., Gill, B.S., and Pumphrey, M.O., Development and characterization of wheat–Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust, Theor. Appl. Genet., 2011, vol. 122, no. 8, pp. 1537–1545.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu, W., Rouse, M., Friebe, B., Jin, Y., Gill, B.S., and Pumphrey, M.O., Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin, Chromosome Res., 2011, vol. 19, no. 5, pp. 669–682.PubMedGoogle Scholar
  8. 8.
    Kuraparthy, V., Chhuneja, P., Dhaliwal, H.S., Kaur, S., Bowden, R.L., and Gill, B.S., Characterization and mapping of cryptic alien introgressions from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat, Theor. Appl. Genet., 2007, vol. 114, no. 8, pp. 1379–1389.CrossRefPubMedGoogle Scholar
  9. 9.
    Mago, R., Verlin, D., Zhang, P., Bansal, U., Bariana, H., Jin, Y., Ellis, J., Hoxha, S., and Dundas, I., Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and new stem rust resistance genes on the 2S#1 chromosome, Theor. Appl. Genet., 2013, vol. 126, no. 12, pp. 2943–2955.CrossRefPubMedGoogle Scholar
  10. 10.
    Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S., Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, pp. 59–87.CrossRefGoogle Scholar
  11. 11.
    Tang, S., Li, Z., Jia, X., and Larkin, P.J., Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease- resistant derivatives in wheat, Theor. Appl. Genet., 2000, vol. 100, nos. 3–4, pp. 344–352.CrossRefGoogle Scholar
  12. 12.
    Han, F., Liu, B., Fedak, F., and Liu, Z., Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis, Theor. Appl. Genet., 2004, vol. 109, pp. 1070–1076.CrossRefPubMedGoogle Scholar
  13. 13.
    Sharp, P.J., Chao, S., Desai, S., and Gale, M.D., The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm, Theor. Appl. Genet., 1989, vol. 78, pp. 342–348.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen, Q., Lu, Y.L., Jahier, J., and Bernard, M., Identification of wheat–Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes, Theor. Appl. Genet., 1994, vol. 89, no. 1, pp. 70–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang, R.C., Larson, S.R., and Jensen, K.B., Analysis of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers, Genome, 2010, vol. 53, no. 12, pp. 1083–1089.CrossRefPubMedGoogle Scholar
  16. 16.
    Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K., and Ozkan, H., Aegilops, in Wild Crop Relatives: Genomic and Breeding Resources. Cereals, Kole, Ch., Ed., Springer, 2013, pp. 1–76.Google Scholar
  17. 17.
    Dundas, I., Verlin, D., and Islam, R., Chromosomal locations of stem and leaf rust resistance genes from Ae. caudata, Ae. searsii and Ae. mutica, in BGRI Workshop, September 17–20, 2015, Sydney. http://www.globalrust. org/sites/default/files/posters/dundas.pdf.Google Scholar
  18. 18.
    Zhirov, E.G., Wheat Genomes and Their Reconstitution, Doctoral (Biol.) Dissertation, Krasnodar, 1989.Google Scholar
  19. 19.
    Iefimenko, T.S., Fedak, Yu.G., Antonyuk, M.Z., and Ternovska, T.K., Microsatellite analysis of chromosomes from the fifth homoeologous group in the introgressive Triticum aestivum/Amblyopyrum muticum wheat lines, Cytol. Genet., 2014, vol. 48, no. 6, pp. 189–197.Google Scholar
  20. 20.
    Yang, Y., Sornaraj, P., Borisjuk, N., Kovalchuk, N., and Haefele, S.M., Transcriptional network involved in drought response and adaptation in cereals, in Abiotic and Biotic Stress in Plants Recent Advances and Future Perspectives, Shanker, A.K. and Shanker, Ch., Eds., Publ. ExLi4EvA, 2016, chap. 1, pp. 3–29.Google Scholar
  21. 21.
    Zhirov, E.G. and Ternovskaya, T.K., Genome engineering in wheat, Vestnik S.-Kh. Nauk, 1984, vol. 10, pp. 58–66.Google Scholar
  22. 22.
    Waninge, J., A modified method of counting chromosomes in root tip cells of wheat, Euphytica, 1965, vol. 14, no. 3, pp. 249–250.CrossRefGoogle Scholar
  23. 23.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor laboratory press, 1989.Google Scholar
  24. 24.
    Zhirov, E.G., Ternovskaya, T.K., and Bessarab, K.S., Investigation on wheat cytogenetics at Krasnodar Lukyanenko Research Institute of Agriculture, EWAC Newsletter, Plant Breeding Inst., Cambridge, 1986, pp. 48–52.Google Scholar
  25. 25.
    Kihara, H., Wheat Studies. Retrospect and Prospects, Elsevier, 1982.Google Scholar
  26. 26.
    Dvorak, J., Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat, Can. J. Genet. Cytol., 1972, vol. 14, no. 2, pp. 371–380.CrossRefGoogle Scholar
  27. 27.
    Maestra, B. and Naranjo, T., Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat, Theor. Appl. Genet., 1998, vol. 97, nos. 1–2, pp. 181–186.CrossRefGoogle Scholar
  28. 28.
    Jones, J.K. and Majisu, B.N., The homoeology of Aegilops mutica chromosomes, Can. J. Genet. Cytol., 1968, vol. 10, no. 3, pp. 620–626.CrossRefGoogle Scholar
  29. 29.
    Ohta, S., Phylogenetic relationship of aegilops mutica boiss. with the diploid species of congeneric Aegilops–Triticum complex, based on the new method of genome analysis using its B-chromosomes, Mem. Coll. Agric. Kyoto Univ., 1991, no. 137, pp. 1–116.Google Scholar
  30. 30.
    Shirasawa, K., Shiokai, S., Yamaguchi, M., Kishitani, S., and Nishio, T., Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice, Theor. Appl. Genet., 2006, vol. 113, no. 1, pp. 147–155.CrossRefPubMedGoogle Scholar
  31. 31.
    Rey, M.-D. and Prieto, P., Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridization, Mol. Breed., 2017, vol. 37, no. 3, p. 32.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Besse, P., McIntyre, C.L., Burner, D.M., and Almeida, C.G., Using genomic slot dot hybridization to assess intergeneric Saccharum erianthus hybrids (Andropogoneae–Saccharinae), Genome, 1997, vol. 40, no. 4, pp. 428–432.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • T. S. Iefimenko
    • 1
    Email author
  • M. Z. Antonyuk
    • 1
  • V. S. Martynenko
    • 1
  • A. G. Navalihina
    • 1
  • T. K. Ternovska
    • 1
  1. 1.National University of Kyiv-Mohyla AcademyKyivUkraine

Personalised recommendations