Skip to main content
Log in

Mutagens induced chromosomal damage in Lablab purpureus (L.) Sweet var. typicus

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Cytological analysis with respect to meiotic behaviour is considered to be the one of the most dependable indices to estimate the potency of mutagens and to elucidate the response of various genotypes to a particular mutagen. Seeds of Lablab purpureus (L.) Sweet var. typicus cv. CO(Gb)14 were subjected to different doses/concentrations of gamma rays and EMS. The effects of different mutagenic treatments on meiosis were studied on treated and control plants. Various types of meiotic aberrations such as stickiness, clumping of chromosomes, laggards, ring chromosomes and precocious movements were observed in the mutagenic treatments. As increase in the concentration, the frequency of cells showing chromosomal aberrations shows a linear increase up to a certain level. However, the EMS treatments proved to be more effective in inducing meiotic aberrations as compared to gamma rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kay, D.E, Hyacinth bean, in Forage Legumes: Crop and Product Digest, Tropical Products Institute, 1979, vol. 3, pp. 184–196.

    Google Scholar 

  2. Maass, B.L., Jamnadass, R.H., Hanson, J., and Pengelly, B.C, Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism, Genet. Res. Crop. Evol., 2005, vol. 52, pp. 683–695.

    Article  Google Scholar 

  3. Mir, F.U.A., Rahman, S.M.L., Mesbahuddin AhmedA.S.M., and Quebedeaux, B, Agroforestry as it pertains to vegetable production in Bangladesh, J. Agron., 2004, vol. 3, no. 4, pp. 282–290.

    Article  Google Scholar 

  4. Basu, A.K., Samantha, S.K., and Sasmala, A.C, Genetic analysis for some seed parameters in lablab bean, Vegetabl. Sci., 2002, vol. 29, no. 1, pp. 17–19.

    Google Scholar 

  5. Golani, I.J., Mehta, D.R., Naliyadhra, M.V., Patel, R.K., and Kanzariya, M.V, Genetic variability, correlation and path analysis for green pod yield and its characters in hyacinth bean, Orissa J. Hortic., 2007, vol. 35, no. 1, pp. 71–75.

    Google Scholar 

  6. Morris, J.B., Legume Genetic Resources with Novel “Value Adde” Industrial and Pharmaceutical Use, Janick, J., Ed., Alexandria: ASHS Press,1999, pp. 196–201.

  7. Micke, A., Donini, B., and Maluszynski, M, Induced mutations for crop improvement—a review, Tropic. Agric., 1987, vol. 64, pp. 259–278.

    Google Scholar 

  8. Gnanamurthy, S., Dhanavel, D., and Girija, M, Studies on induced chemical mutagenesis in maize (Zea mays L.), Int. J. Curr. Res., 2011, vol. 3, no. 11, pp. 37–40.

    Google Scholar 

  9. Sarada, C, Srinivasa, RaoV., Umajyothi, K., and Reddy, P.V., Mutagenic effectiveness and efficacy of gamma rays and EMS in coriander (Coriandrum sativum L.), Int. J. Pure Appl. Biosci., 2015, vol. 3, no. 2, pp. 445–449.

    Google Scholar 

  10. Khursheed, S., Raina, A., and Khan, S, Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis, Arch. Curr. Res. Int., 2016, vol. 4, no. 1, pp. 1–7.

    Article  Google Scholar 

  11. FAO/IAEA, Mutant Varieties Database (MVD), 2012.

  12. Ahloowalia, B.S., Maluszynski, M., and Nichterlein, K, Global impact of mutation derived varieties, Euphytica, 2004, vol. 135, no. 2, pp. 187–204.

    Article  Google Scholar 

  13. Lieber, M.R, Pathological and physiological double strand-breaks, Am. J. Pathol., 1998, vol. 153, no. 5, pp. 1323–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Avijeet, C., Shukla, S., Rastogi, A., Mishra, B.K., Ohri, D., and Singh, S.P, Impact of mutagenesis on cytological behavior in relation to specific alkaloids in Opium Poppy (Papaver somniferum L.), Caryologia, 2011, vol. 64, no. 1, pp. 14–24.

    Article  Google Scholar 

  15. Kumar, G. and Srivastava, N, Efficiency and effectiveness of gamma rays and sodium azide in sesbania cannabina poir, Cytologia, 2013, vol. 78, no. 1, pp. 81–90.

    Article  Google Scholar 

  16. Al-Ansary, A.M.F., Nagwa, R., and Abd-El, HamiedA.M., and Ottai, M.E.S, Cytogenetic changes and genomic DNA assay of Sudani and Masri Roselle varieties affected by different gamma irradiation doses, Int. J. ChemTech Res., 2016, vol. 9, no. 3, pp. 97–107.

    CAS  Google Scholar 

  17. Kamaruddin, N., Abdullah, S., and Rahim, HarunA., The effect of gamma rays on the radiosensitivity and cytological analysis of Zingiber officinale Roscoe varieties Bentong and Tanjung Sepat, Int. J. Adv. Agric. Environ. Eng., 2016, vol. 3, no. 1, pp. 142–145.

    Google Scholar 

  18. Oleinick, N.L., Balasubramaniam, U., Xue, L., and Chiu, S, Nuclear structure and the microdistribution of radiation damage in DNA, Int. J. Radiat. Biol., 1994, vol. 66, no. 5, pp. 523–529.

    Article  CAS  PubMed  Google Scholar 

  19. Srivastava, P., Marker, S., Pandey, P., and Tiwari, D.K, Mutagenic effects of sodium azide on the growth and yield characteristics in wheat (Triticum aestivum L. Em. Thell), Asian J. Plant Sci., 2011, vol. 10, no. 3, pp. 190–201.

    Article  CAS  Google Scholar 

  20. Gunasekaran, A. and Pavadai, P, Studies on induced physical and chemical mutagenesis in groundnut (Arachis hypogia), Int. Lett. Nat. Sci., 2015, vol. 35, pp. 25–35.

    Google Scholar 

  21. Patil, B. and Bhat, G.I., A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternatea L., Cytologia, 1992, vol. 57, no. 2, pp. 259–264.

    Article  CAS  Google Scholar 

  22. Bashir, S., Wani, A.A., and Nawchoo, I.A, Chromosomal damage induced by gamma rays, ethyl methyl sulphonate and sodium azide in Trigonella foenumgraecum L, Chromosome Bot., 2013, vol. 8, pp. 1–6.

    Google Scholar 

  23. Jafri, I.F., Khan, A., and Gulfishan, M, Genomic damage induced by individual and combination treatment of gamma rays and ethyl methane sulphonate in Coriandrum sativum L. var. Karishma, Int. J. Bot. Res., 2013, vol. 3, no. 2, pp. 79–85.

    Google Scholar 

  24. Kumar, G. and Gupta, P, Mutagenic efficiency of lower doses of gamma rays in black cumin (Nigella sativa L.), Cytologia, 2007, vol. 72, no. 4, pp. 435–440.

    Article  Google Scholar 

  25. Gulfishan, M., Khan, A.H., Jafri, I.F., and Bhat, T.A, Assessment of mutagenicity induced by MMS and DES in Capsicum annuum L, Saudi J. Biol. Sci., 2012, vol. 19, no. 2, pp. 251–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gecheff, K.I, Production and identification of new structural chromosome mutations in barley (Hordeum vulgare L.), Theor. Appl. Genet., 1996, vol. 92, no. 6, pp. 777–781.

    Article  CAS  PubMed  Google Scholar 

  27. Kaymak, F, Cytogenetic effect of maleic hydrazide on Helianthus annus L., Pakistan J. Biol. Sci., 2005, vol. 8, no. 1, pp. 104–108.

    Article  Google Scholar 

  28. Srivastava, A. and Kapoor, K, Seed yield is not impaired by chromosome stickiness in sodium azide treated Trigonella foenum-graecum, Cytologia, 2008, vol. 73, no. 2, pp. 115–121.

    Article  Google Scholar 

  29. Zeerak, N.A, Mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate in brinjal (Solanum melongena L.), J. Nucl. Agric. Biol., 1992, vol. 21, pp. 84–87.

    CAS  Google Scholar 

  30. Darlington, C.D. and La Cour, L.F., The Handling of Chromosomes, London: George Allen and Unwin Ltd., 1962.

    Google Scholar 

  31. Azad, S.A, Mutagens induced meiotic chromosomal abnormalities in variety Asha of Mungbean, Indian J. Sci. Res., 2011, vol. 2, no. 4, pp. 29–31.

    Google Scholar 

  32. Kumar, G. and Dwivedi, K, Ionizing radiation mediated cytological manifestation in microsporogenesis of Brassica campestris L. (Brassicaceae), J. Central Eur. Agric., 2012, vol. 13, no. 4, pp. 805–813.

    Article  Google Scholar 

  33. Haneef, I., Khan, A.H., Aslam, R., Gulfishan, M., and Choudhary, S, Assessment of genotoxicity of ethylmethane sulphonate (EMS) in two varieties of Lentil (Lens culinaris Medik.), Biosci. Int., 2013, vol. 2, no. 1, pp. 01–04.

    Google Scholar 

  34. Goyal, S. and Khan, S, Cytology of induced morphological mutants in Vigna mungo (L.) Hepper, Egypt. J. Biol., 2010, vol. 12, pp. 81–85.

    Google Scholar 

  35. Alka, M.Y.K., Mohsin, BhatT., Choudhary, S., and Aslam, R, Genotoxic effect of ethyl methane sulphonate and sodium azide in Linum usitatissimum L, Int. J. Plant. Anim. Environ. Sci., 2012, vol. 2, no. 3, pp. 1–6.

    CAS  Google Scholar 

  36. Jayabalan, N. and Rao, G.R, Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mull. var. Pusa Ruby, Cytologia, 1987, vol. 52, pp. 1–4.

    Article  Google Scholar 

  37. El-Khodary, S., Habib, A., and Haliem, A, Cytological effect of herbicide garlon-4 on root mitosis of allium cepa, Cytologia, 1989, vol. 54, no. 3, pp. 465–472.

    Article  CAS  Google Scholar 

  38. Bhat, T.A., Sharma, M., and Anis, M, Comparative analysis of meiotic aberrations induced by diethylsulphonate and sodium azide in broad bean (Vicia faba L.), Asian J. Plant Sci., 2007, vol. 6, pp. 1051–1057.

    Article  CAS  Google Scholar 

  39. Iqbal, M. and Datta, A.K, Cytogenetics studies in Withania somnifera (L.) (Solanaceae), Cytologia, 2007, vol. 72, no. 1, pp. 43–47.

    Article  Google Scholar 

  40. Khan, Z., Gupta, H., Ansari, M.Y.K., and Chaudhary, S, Methyl methane sulphonate induced chromosomal variations in a medicinal plant Cichorium intybus L. during microsporogenesis, Biol. Med., 2009, vol. 1, no. 2, pp. 66–69.

    CAS  Google Scholar 

  41. Avijeet, C., Shukla, S., Ratogi, A., Mishra, B.K., Ohri, D., and Singh, S.P, Impact of mutagenesis on cytological behavior in relation to specific alkaloids in Opium Poppy (Papaver somniferum L.), Caryologia, 2011, vol. 64, no. 1, pp. 14–24.

    Article  Google Scholar 

  42. Beadle, G.W., A gene for sticky chromosomes in Zea mays, Zschr, Ind. Abst. Vererb., 1932, vol. 63, no. 1, pp. 195–217.

    Google Scholar 

  43. Bione, N.C.P., Pagliarini, M.S., and Toledo, J.F.F, Meiotic behavior of several Brazilian soybean varieties, Genet. Mol. Biol., 2000, vol. 23, no. 3, pp. 623–631.

    Article  Google Scholar 

  44. McGill, M., Pathak, S., and Hsu, T.C, Effects of ethidium bromide on mitosis and chromosomes: a possible material basis for chromosome stickiness, Chromosoma, 1974, vol. 47, no. 2, pp. 157–166.

    Article  CAS  PubMed  Google Scholar 

  45. Klasterska, I., Natrajan, A.T., and Ramel, C, An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations, Hereditas, 1976, vol. 83, pp. 153–162.

    Article  CAS  PubMed  Google Scholar 

  46. Myers, J.R., Gritton, E.T., and Struckmeyer, B.E, Genetic male sterility in pea (Pisum sativum), Euphytica, 1992, vol. 63, pp. 245–256.

    Google Scholar 

  47. Tarar, J.L. and Dnyansagar, V.R, Comparison of ethyl methane sulphonate and radiation induced meiotic abnormalities in Turnera ulmifolia Linn. var. angustifolia wild, Cytologia, 1980, vol. 45, pp. 221–231.

    Article  CAS  Google Scholar 

  48. Gaulden, M.E, Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations, Mutagenesis, 1987, vol. 2, no. 5, pp. 357–365.

    CAS  PubMed  Google Scholar 

  49. Jabee, F. and Ansari, M.Y.K, Mutagenic effectiveness and efficiency of hydrazine sulphate (HS) in inducing cytomorphological mutations in Cicer arietinum L. var. K-850, J. Cytol. Genet., 2005, vol. 6, no. 2, pp. 161–166.

    CAS  Google Scholar 

  50. Khan, M.R. and Aslam, K.M, Effect of 2,4-D on seedling physiology and cytogenetical studies in Triticum aestivum and Phelaris minor (Gramineae), Acta Bot. Yun., 2006, vol. 28, no. 4, pp. 394–398.

    CAS  Google Scholar 

  51. Chidambaram, A., Sundaramoorthy, P., Murugan, A., and Baskaran, S.G.L, Chromium induced cytotoxicity in black gram (Vigna mungo L.), Iran. J. Environ. Health Sci. Eng., 2009, vol. 6, no. 1, pp. 17–22.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Monica.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monica, S., Seetharaman, N. Mutagens induced chromosomal damage in Lablab purpureus (L.) Sweet var. typicus. Cytol. Genet. 51, 230–237 (2017). https://doi.org/10.3103/S0095452717030100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452717030100

Navigation