Advertisement

Cytology and Genetics

, Volume 51, Issue 2, pp 108–116 | Cite as

Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels

  • E. L. KordyumEmail author
  • D. K. Chapman
Article

Abstract

The article discusses the effects of real and simulated microgravity on certain cell components and processes, using, among others, the recently received new data. A substantial importance is given to the effect of microgravity on the state of cytoplasmic membrane, transcriptome and proteome, cell wall, and Ca2+-signaling in plant cells that are not specialized for the perception of gravity. The authors underline the exceptional significance of data about the organ-specific reactions of transcriptome and proteome to spaceflight conditions, which suggest novel integrated approaches to the solution of basic and applied problems in plant space biology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferl, R.J., Wheeler, R., Levine, H.G., and Paul, A.L., Plants in space, Curr. Opin. Plant. Biol., 2002, vol. 5, pp. 258–263.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferl, R.J., Koh, J., Denison, F., and Paul, A.L., Spaceflight induces specific alterations in the proteomes of Arabidopsis, Astrobiology, 2015, vol. 15, no. 1, pp. 32–56.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wheeler, R.M., Plants for human life support in space: from Myers to Mars, Gravit. Space Biol., 2010, vol. 23, no. 2, pp. 25–35.Google Scholar
  4. 4.
    Zhang, Y., Wang, L., Xie, J., and Zheng, H., Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft, Planta, 2015, vol. 241, no. 2, pp. 475–488.PubMedCrossRefGoogle Scholar
  5. 5.
    Merkys, A.I. and Laurinavichius, R.S., Complete cycle of individual development of Arabidopsis thaliana (L.) Heynh. plants on board the Salyut-7 orbital station, Dokl. Akad. Nauk SSSR, 1983, vol. 271, pp. 509–512.Google Scholar
  6. 6.
    Yano, S., Kasahara, H., Masuda, D., Tanigaki, F., Shimazu, T., Suzuki, H., Karahara, I., Soga, K., Hoson, T., Tayama, I., Tsuchiya, Y., and Kamisaka, S., Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station, Adv. Space Res., 2013, vol. 51, no. 5, pp. 780–788.CrossRefGoogle Scholar
  7. 7.
    Musgrave, M.E., Kuang, A., Xiao, Y., Stout, S.C., Bringham, G.E., Briarty, L.G., Levenskikh, M.A., Sychev, V.N., and Podolski, I.G., Gravity independence of seed-to-seed cycling in Brassica rapa, Planta, 2000, vol. 210, no. 3, pp. 400–406.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuang, A., Popova, A., McClure, G., and Musgrave, I.E., Dynamics of storage reserve deposition during Brassica rapa l. Pollen and seed development in microgravity, Int. J. Plant Sci., 2005, vol. 166, no. 1, pp. 85–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Bingham, G.E., Levinskikh, M.A., Sytchev, V.N., and Podolsky, I.G., Effects of gravity on plant growth, J. Gravit. Physiol., 2000, vol. 7, no. 2, pp. 5–8.Google Scholar
  10. 10.
    Sychev, V.N., Levinskikh, M.A., Gostimsky, S.A., Bingham, G.E., and Podolsky, I.G., Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the international space station, Acta Astronaut., 2007, vol. 60, nos. 4–7, pp. 426–432.CrossRefGoogle Scholar
  11. 11.
    Takahashi, H., Fujii, N., Kamada, M., Higashitani, A., Yamazaki, Y., Kobayashi, A., Takano, M., Yamasaki, S., Sakata, T., Mizuno, H., Kaneko, Y., Murata, T., Kamigaichi, S., Aizawa, S., Yoshizaki, I., Shimazu, T., and Fukui, K., Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings, Biol. Sci. Space, 2000, vol. 14, no. 2, pp. 64–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Paul, A.L., Zupanska, A.K., Ostrow, D.T., Zhang, Y., Sun, Y., Li, J.L., Shanker, S., Farmerie, W.G., Amalfitano, C.E., and Ferl, R.J., Spaceflight transcriptomes: unique responses to a novel environment, Astrobiology, 2012, vol. 12, no. 1, pp. 40–56.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kordyum, E.L., Plant cell gravisensitivity and adaptation to microgravity, J. Plant Biol., 2014, vol. 16, no. Suppl. 1, pp. 79–90.CrossRefGoogle Scholar
  14. 14.
    Kordyum, E.L., Biology of plant cells in microgravity and under clinostating, Int. Rev. Cytol., 1997, vol. 171, pp. 1–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Sieberer, B.J., Kieft, H., Franssen-Verheijen, T., Emons, A.M., and Vos, J.W., Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space, Planta, 2009, vol. 230, no. 6, pp. 1129–1140.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Halstead, T.W. and Dutcher, F.R., Plants in space, Annu. Rev. Plant. Physiol., 1987, vol. 38, pp. 317–345.PubMedCrossRefGoogle Scholar
  17. 17.
    Claasen, D.E. and Spooner, B.S., Impact of altered gravity on aspects of cell biology, Int. Rev. Cytol., 1994, vol. 156, pp. 301–373.CrossRefGoogle Scholar
  18. 18.
    Paul, A.L., Popp, M.P., Gurley, W.B., Guy, C., Norwood, K.L., and Ferl, R.J., Arabidopsis gene expression patterns are altered during spaceflight, Adv. Space Res., 2005, vol. 36, no. 7, pp. 1175–1181.CrossRefGoogle Scholar
  19. 19.
    Salmi, M.L. and Roux, S.J., Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii, Planta, 2008, vol. 229, no. 1, pp. 151–159.PubMedCrossRefGoogle Scholar
  20. 20.
    Manzano, A.I., Herranz, R., Manzano, A., van Loon, J.W.A., and Medina, F.J., Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system, Front. Astron. Space Sci. Plant Cells Altered Gravity, 2016, vol.3.Google Scholar
  21. 21.
    Demkiv, O.T., Kordyum, E.L., Tairbekov, M.G., Sack, F.D., Kern, V.D., and Kardash, O.R., The growth movement of moss protonemata under clinostatic and microgravity conditions, Aviasp. Ecol. Med., 1999, vol. 33, no. 3, pp. 31–34.Google Scholar
  22. 22.
    Wolverton, S.C. and Kiss, J.Z., An update on plant space biology, Gravit. Space Biol. Bull., 2009, vol. 22, pp. 13–20.Google Scholar
  23. 23.
    Millar, K.D., Johnson, C.M., Edelmann, R.E., and Kiss, J.Z., An endogenous growth pattern of roots is revealed in seedlings grown in microgravity, Astrobiology, 2011, vol. 11, no. 8, pp. 787–797.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Paul, A.L., Wheeler, R.M., Levine, H.G., and Ferl, R.J., Fundamental plant biology enabled by the space shuttle, Am. J. Bot., 2013, vol. 100, no. 1, pp. 226–234.PubMedCrossRefGoogle Scholar
  25. 25.
    Kittang, A.I., Iversen, T.H., Fossum, K.R., Mazars, C., Carnero-Diaz, E., Boucheron-Dubuisson, E., Le Disquet, I., Legué, V., Herranz, R., Pereda-Loth, V., and Medina, F.J., Exploration of plant growth and development using the European modular cultivation system facility on the International Space Station, Plant Biol. (Stuttg.), 2014, vol. 16, no. 3, pp. 528–538.CrossRefGoogle Scholar
  26. 26.
    Paul, A.L. and Ferl, R.J., Spaceflight exploration in plant gravitational biology, Methods Mol. Biol., 2015, vol. 1309, pp. 285–305.PubMedCrossRefGoogle Scholar
  27. 27.
    Sytnik, K.M., Kordyum, V.A., Kordyum, E.L., Grabskyy, V.G., Manko, V.G., Nedukha, O.M., and Popova, A.F., Microorganisms in Space Flight, Kyiv: Naukova Dumka, 1983.Google Scholar
  28. 28.
    Polulyakh, Yu.A., The content of phospholipids and fatty acids in the plasma membrane of pea root cells by clinorotation, Dokl. Akad. Nauk USSR, 1988, no. 10, pp. 67–69.Google Scholar
  29. 29.
    Polulyakh, Yu.A., Zhadko, S.I., and Klimchuk, D.A., Plant cell plasma membrane structure and properties under clinostating, Adv. Space Res., 1989, vol. 9, pp. 71–74.CrossRefGoogle Scholar
  30. 30.
    Hanke, W., Planar lipids bilayers as model systems to study the interaction of gravity with biological membranes, in 30th Cospar Scientific Assembly, Hamburg, Germany, 1994, p.283.Google Scholar
  31. 31.
    Goldermann, M. and Hanke, W., Ion channel are sensitive to gravity changes, Microgravity Sci. Technol., 2001, vol. 13, no. 1, pp. 35–38.PubMedCrossRefGoogle Scholar
  32. 32.
    Sieber, M., Hanke, W., and Kohn, F.P.M., Modification of membrane fluidity by gravity, Open J. Biophys., 2014, vol. 4, no. 4, pp. 105–111.CrossRefGoogle Scholar
  33. 33.
    Kordyum, E.L., Nedukha, O.M., Grakhov, V.P., Vorobyova, T.V., Klymenko, O.M., and Zhupanov, I.V., Study of the influence of simulated microgravity on the cytoplasmic membrane lipid bilayer of plant cells, Kosmichna Nauka Technologia, 2015, vol. 21, no. 3, pp. 40–47.CrossRefGoogle Scholar
  34. 34.
    Nedukha, O.M., Kordyum, E.L., Grakhov, V.P., et al., Fatty acids and lipids content in Pisum sativum seedlings plasmalemma under clinorotation, in Proc. Plant Biology and Technology International Conf., Almaty, Kazakhstan, 2014, p.176.Google Scholar
  35. 35.
    Mongrand, S., Morel, J., Laroche, J., Claverol., S., Carde, J.P., Hartmann, M.A., Bonneu, M., Simon-Plas, F., Lessire, R., and Bessoule, J.J., Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane, J. Biol. Chem., 2004, vol. 279, no. 35, pp. 36277–36286.PubMedCrossRefGoogle Scholar
  36. 36.
    Borner, G.H.H., Sherrier, D.J., Weimar, T., Michaelson, L.V., Hawkins, N.D., MacAskill, A., Napier, J.A., Beale, M.H., Lilley, K.S., and Dupree, P., Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts, Plant Physiol., 2005, vol. 137, no. 1, pp. 104–116.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kraft, M.L., Plasma membrane organization and function: moving past lipid rafts, Mol. Biol. Cell, 2013, vol. 24, no. 18, pp. 2765–2768.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Demir, F., Horntrich, C., Blachutzik, J.O., Scherzer, S., Reinders, Y., Kierszniowska, S., Schulze, W.X., Harms, G.S., Hedrich, R., Geiger, D., and Kreuzer, I., Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 20, pp. 8296–8301.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Seifert, G.J., Xue, H., and Acet, T., The Arabidopsis thaliana FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth, Ann. Bot., 2014, vol. 114, no. 6, pp. 1125–1133.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lingwood, D. and Simons, K., Lipid rafts as a membrane-organizing principle, Science, 2010, vol. 327, no. 5961, pp. 46–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Mazars, C., Brie’re, C., Grat, S., Pichereaux, C., Rossignol., M., Pereda-Loth, V., Eche, B., Boucheron-Dubuisson, E., Le Disquet, I., Medina, F.J., Graziana, A., and Carnero-Diaz, E., Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station, PLoS One, 2014, vol. 9, no. 3, pp. 1–18.CrossRefGoogle Scholar
  42. 42.
    Klymenko, O.M., Zhupanov, I.V., Kordyum, E.L., and Vorob’eva, T.V., The influence of simulated microgravity on rafts fatty acids composition from plant cells cytoplasmic membranes, in 16 Ukr. Conf. Space Res., Odessa, 2016, p.60.Google Scholar
  43. 43.
    Bohnert, H.J., Gong, Q., Li, P., and Ma, S., Unraveling abiotic stress tolerance mechanisms—getting genomics going, Curr. Opin. Plant Biol., 2006, vol. 9, no. 2, pp. 180–188.PubMedCrossRefGoogle Scholar
  44. 44.
    Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., and Kiss, J.Z., Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes, Planta, 2013, vol. 238, no. 3, pp. 519–533.PubMedCrossRefGoogle Scholar
  45. 45.
    Clement, J.Q., Gene Expression Microarrays in Microgravity Research: Toward the Identification of Major Space Genes, INTECH Open Acc. Publ., 2012.Google Scholar
  46. 46.
    Paul, A.L., Manak, M.S., Mayfield, J.D., Reyes, M.F., Gurley, W.B., and Ferl, R.J., Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana, Astrobiology, 2011, vol. 11, no. 8, pp. 743–758.PubMedCrossRefGoogle Scholar
  47. 47.
    Aubry-Hivet, D., Nziengui, H., Rapp, K., Oliveira, O., Paponov, I.A., Li, Y., Hauslage, J., Vagt, N., Braun, M., Ditengou, F.A., Dovzhenko, A., and Palme, K., Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots, Plant Biol. (Stuttg.), 2014, vol. 16, suppl. 1, pp. 129–141.CrossRefGoogle Scholar
  48. 48.
    Zupanska, A.K., Denison, F.C., Ferl, R.J., and Paul, A.L., Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana, Am. J. Bot., 2013, vol. 100, no. 1, pp. 235–248.PubMedCrossRefGoogle Scholar
  49. 49.
    Kozeko, L.Y. and Kordyum, E.L., The stress protein level under clinorotation in context of the seedling developmental program and the stress response, Microgravity Sci. Technol., 2006, vol. 18, nos. 3–4, pp. 254–256.CrossRefGoogle Scholar
  50. 50.
    Paul, A.L., Zupanska, A.K., Schultz, E., and Rerl, R.J., Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight, BMC Plant Biol., 2013, vol. 13, pp. 112–122.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Keegstra, K., Plant cell walls, Plant Physiol., 2010, vol. 154, no. 2, pp. 483–486.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cowles, J.R., Scheld, H.W., Lemay, R., and Petersen, C., Growth and lignification in seedlings exposed to eight days of microgravity, Ann. Bot., 1984, vol. 54, no. Suppl. 3, pp. 33–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Levine, L.H., Heyeng, A.G., Levine, H.G., Choi, J.W., Davin, L.B., Krikorian, A.D., and Lewis, N.G., Cellwall architecture and lignin composition of wheat developed in a microgravity environment, Phytochemistry, 2001, vol. 57, pp. 835–846.PubMedCrossRefGoogle Scholar
  54. 54.
    Cowles, J.R., Le May R., Jahns G., Scheld H.W., Peterson C., Lignification in young plant seedlings grown on earth and aboard the space shuttle, in Plant Cell Wall Polymers: Biogenesis and Biodegradation, Lewis, N.G. and Paice, M.G., Ed., 1989, pp. 203–213.CrossRefGoogle Scholar
  55. 55.
    Legue, V., Cabane, M., Ladouce, N., Dauphin, A., Grima-Pettenati, J., and Lapierre, C., The impact of gravity on wood formation in Eucalyptus globulus: experiences in simulated microgravity, in 26th Ann. Int. Gravitat. Physiology Meeting, Cologne, Germany, 2005, p.21.Google Scholar
  56. 56.
    Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., and Kamisaka, S., Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space, Plant Cell Physiol., 2002, vol. 43, no. 9, pp. 1067–1071.PubMedCrossRefGoogle Scholar
  57. 57.
    Hoson, T., Soga, K., Wakabayashi, K., Kamisaka, S., and Tanimoto, E., Growth and cell wall changes in rice roots during spaceflight, Plant Soil, 2003, vol. 255, no. 1, pp. 19–26.PubMedCrossRefGoogle Scholar
  58. 58.
    Hoson, T., Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space, Life, 2014, vol. 4, no. 2, pp. 205–216.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Laurinavichius, R.S., Yaroschus, A.V., and Marchukajtis, A., Metabolism of pea plants grown under space flight conditions, in Biologicheskie issledovaniya na orbitalnikh stanziyakh Salyut (Biological Studies at Orbital Stations Salyut), Dubinin, N.P., Ed., Moscow: Nauka, 1984, pp. 96–102.Google Scholar
  60. 60.
    Gorovoy, L.F., Kasatkina, T.B., Popova, A.F., Kordyum, E.L., Ugolev, A.M., and Kalakutskiy, L.V., Fungi and algae—objects of space biology, in Problems of Space Biology, Leningrad, Nauka, 1991.Google Scholar
  61. 61.
    Popova, A.F., Shnyukova, E.I., Kordyum, E.L., and Sytnik, K.M., Plastid ultrastructure, fractional composition and specific activity of amylases in chlorella cells in microgravity, J. Gravit. Physiol., 1995, vol. 2, pp. 159–160.Google Scholar
  62. 62.
    Nedukha, E.M., Effects of microgravity on the structure and function of plant cell walls, Int. Rev. Cytol., 1997, vol. 170, pp. 39–77.PubMedCrossRefGoogle Scholar
  63. 63.
    Rayle, D.L. and Cleland, R.E., The acid growth theory of auxin-induced cell elongation is alive and well, Plant Physiol., 1992, vol. 99, no. 4, pp. 1271–1274.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Trewavas, A.J. and Malho, R., Ca2+ signaling in plant cells: the big network!, Curr. Opin. Plant Biol., 1998, vol. 1, no. 5, pp. 428–433.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang, I.I., Zheng, H.Q., Sha, W., Zeng, R., and Xia, Q.C., A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation, J. Exp. Bot., 2006, vol. 57, no. 4, pp. 827–835.PubMedCrossRefGoogle Scholar
  66. 66.
    Soh, H., Auh, C., Soh, W.Y., Han, K., Kim, D., Lee, S., and Rhee, Y., Gene expression changes in Arabidopsis seedlings during short-to long-term exposure to 3-D clinorotation, Planta, 2011, vol. 234, no. 2, pp. 255–270.PubMedCrossRefGoogle Scholar
  67. 67.
    Kwon, T., Sparks, J.A., Nakashima, J., Allen, S.N., Tang, Y., and Blancaflor, E.B., Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development, Am. J. Bot., 2015, vol. 102, no. 1, pp. 21–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Vernikos, J. and Schneider, V.S., Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review, Gerontology, 2010, vol. 56, no. 2, pp. 157–166.PubMedGoogle Scholar
  69. 69.
    Hepler, P.K. and Wayne, R.O., Calcium and plant development, Annu. Rev. Plant. Physiol., 1985, vol. 36, pp. 397–439.CrossRefGoogle Scholar
  70. 70.
    Roux, S.J., Calcium as mediator of plants’ directional growth response to gravity, in Fundamental of Space Biology, Asahima, M. and Malacinski, G.M., Eds., Berlin: Springer-Verlag, 1990, pp. 57–67.Google Scholar
  71. 71.
    Knight, H., Calcium signaling during abiotic stress in plants, Int. Rev. Cytol., 2000, vol. 195, pp. 269–324.PubMedCrossRefGoogle Scholar
  72. 72.
    Nedukha, E.M., Long clinostation influence on the localization of free and weakly bound calcium in cell walls of Funaria hygrometrica moss protonema cells, Adv. Space Res., 1989, vol. 9, no. 11, pp. 83–86.PubMedCrossRefGoogle Scholar
  73. 73.
    Belyavskaya, N.A., Calcium and graviperception in plants: inhibitor analysis, Int. Rev. Cytol., 1996, vol. 168, pp. 123–185.CrossRefGoogle Scholar
  74. 74.
    Hilaire, E., Paulsen, A.Q., Brown, C.S., and Guikema, J.A., Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells, Plant Cell Physiol., 1995, vol. 36, no. 5, pp. 831–837.PubMedCrossRefGoogle Scholar
  75. 75.
    Klymchuk, D.O., Brown, C.S., Chapman, D.K., Vorobyova, T.V., and Martyn, G.M., Cytochemical localization of calcium in soybean root cap cells in microgravity, Adv. Space Res., 2001, vol. 27, no. 5, pp. 967–972.PubMedCrossRefGoogle Scholar
  76. 76.
    Rasmussen, O., Klimchuk, D.A., Kordyum, E.L., Danevich, L.A., Tarnavskaya, E.B., Lozovaya, V.V., Tairbekov, M.G., Baggerud, C., and Iversen, T.H., The effect of exposure to microgravity on the development and structural organization of plant protoplasts flown on Biokosmos 9, Physiol. Plant., 1992, vol. 84, no. 1, pp. 162–170.PubMedCrossRefGoogle Scholar
  77. 77.
    Kordyum, E.L. and Danevich, L.A., Calcium balance changes in tip growing plant cells under clinorotation, J. Gravit. Physiol., 1995, vol. 2, no. 1, pp. 147–148.Google Scholar
  78. 78.
    Shevchenko, G. and Kordyum, E., Orientation of root hair growth is influenced by simulated microgravity, J. Gravit. Physiol., 2001, vol. 8, no. 1, pp. 35–36.Google Scholar
  79. 79.
    Hausmann, N., Fengler, S., Hennig, A., Franz-Wachtel, M., Hampp, R., and Neef, M., Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data, Plant Biol. (Stuttg.), 2014, vol. 16, suppl. 1, pp. 120–128.CrossRefGoogle Scholar
  80. 80.
    Ward, J.M., Pei, Z.M., and Schroeder, J.I., Roles of ion channels in initiation of signal transduction in higher plants, Plant Cell, 1995, vol. 7, no. 7, pp. 833–844.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kordyum, E.L., Calcium signaling in plant cells in altered gravity, Adv. Space Res., 2003, vol. 32, no. 8, pp. 1621–1630.PubMedCrossRefGoogle Scholar
  82. 82.
    Kordyum, E.L. and Chapman, D.K., Plants in Space, Kyiv: Akademperiodika, 2007.Google Scholar
  83. 83.
    Tatsumi, H., Furuichi, T., Nakano, M., Toyota, M., Hayakawa, K., Sokabe, M., and Iida, H., Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants, Plant Biol. (Stuttg.), 2014, vol. 16, suppl. 1, pp. 18–22.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Kholodny Institute of BotanyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations